

Abstract

A Magneto-Optical Trap (MOT) is a wonderful tool for undergraduate research and teaching laboratories that highlights many topics in modern physics. Our poster describes the design decisions and process that resulted in an operational MOT using the resources and time available at an undergraduate institution. By building many components and purchasing others, we were able to complete the MOT in approximately two years at a cost of about \$40,000. Neither of us had experience with optical systems prior to starting work on the project. Recommendations are given for a phased build of a MOT.

MOT Techniques

Experimental Technique	Where Applied
Machining	Laser cavity parts Optical supports
Electronics Design, Layout, & Construction	Diode current control Diode temperature control Sidelock servo Peaklock servo Photodiode amplifier Differential photodetector
Optics	Saturated Absorption Spectroscopy (SAS) Beam shaping Beam splitting Beam polarization
Vacuum Systems	SAS Rb cell MOT cell
Computer Programming	System control for measurements

Neophytes Build a **Magneto-Optical Trap** Judith B. Olson, Bruce Thompson

v millor i toport		
MOT Education Uses		
Area	Principle/Concep	
Extended Cavity Diode Laser (ECDL)	Semiconductor physics Internal lasing modes 2-D aperture diffraction Beam collimation Diffraction gratings Extended cavity modes Resonant feedback Electrical feedback via grating and diode control	
Laser Light & Interactions	Stimulated emission & coherence Linear & circular polarizat Absorption; stimulated & spontaneous emission Photon momentum Photon angular momentu	
Optical Components	Partial reflection & beamsplitters Polarizing beamsplitters	

Optical Components	Partial reflection & beamsplitters Polarizing beamsplitters Beam expander optics Half & quarter waveplates
Rubidium Characteristics	Shell structure & alkali metal Vapor pressure Isotopic composition Nuclear spin Atomic energy levels Fine splitting Hyperfine splitting
Optical Molasses	Kinetic gas theory Photon scattering Doppler shift
Magneto- Optical Trap	Maxwell coil magnetic field (anti-Helmholtz) Electronic magnetic moment Zeeman splitting Mechanics of atom trajectoric
MOT Cloud Characteristics	Atom count & number densit Capture rates & lifetime in th cloud Doppler & recoil temperature
Going Further with the Project	Evaporative cooling Magnetic compression RF cooling Bose-Einstein Condensation

Written Report and Thesis Available at: http://faculty.ithaca.edu/bthompso/docs/

III. Magneto-Optical Trap (MOT) 1.) Two Working SAS Systems 2.) Rb MOT Chamber - miniMOT[™] ColdQuanta 3.) Magnetic Coils 4.) Optical Components Repump Laser 1/4 Wave Plates Cooling and Beam Trapping Laser Expanders **Beam Splitter** Measurements: Create the cold cloud **Cloud characteristics** Cost: \$10,000 previous + \$25,000 ≈ \$35,000

Acknowledgements

Many thanks to Evan Salim of University of Colorado Boulder, the Ithaca College Educational Grant Initiative, ColdQuanta of Boulder, Colorado, The American Physical Society, The Society of Physics Students, and the Ithaca College Physics Department.

Contacts

Question/Comments? Contact: Judith Olson: Judith.Olson@Colorado.edu

Bruce Thompson: Bthompso@ithaca.edu

Written Report and Thesis Available:

http://faculty.ithaca.edu/bthompso/docs/ http://www.ithaca.edu/hs/depts/physics/stud ents2/theses/