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Summary

Measuring the motion of quantum particles has been playing a significant role in

performing high precision inertial sensing and studying fundamental physics. While

most of the motion sensing schemes with cold atoms are based on single-particles. In

this thesis, a new measuring method of using a collective state of atoms for motion

quantum sensing is introduced. Two experiments were demonstrated to investigate

its feasibility. One is related to the light-dragging effect in an electromagnetically

induced transparent (EIT) cold 85Rb atomic ensemble. The dragging coefficient Fd

was enhanced to 1.67 × 105, which was three orders of magnitude better than the

previous experiments. With a large enhancement of the dragging effect, we realised

an atom-based velocimeter that has a sensitivity of 1 mm/s, which was two orders

of magnitude higher than the velocity width of the atomic medium used before.

Such a demonstration could pave the way for motion sensing using the collective

state of atoms in a room temperature vapour cell or solid-state material. Another

experiment is related to the motion sensing in a driven periodic potential. The

motion of the atomic ensemble undergoing Bloch oscillation was measured using the

light dragging method. In order to have efficient Bloch oscillation of atoms, the

first Raman sideband cooling of 85Rb to pre-cool atomic ensemble close to the recoil

temperature (357 nK) was achieved by us. The phase shift measurements showed

the linear-like relation to the accelerating time with the data precision 0.00036 rad

(0.005 ns, 0.7 mm/s), instead of the stepwise oscillation period τB. To observe the

stepwise motion, it is required to reduce the lattice field intensity and implement

the velocity selection technique to select atoms with a narrow velocity width.
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Chapter 1

Introduction

Measuring the motion of some macroscopic object has played a significant role in

inertial sensing and navigation. For example, the Doppler radars, as show in Fig. 1.1

[1], rely on measuring the first order Doppler shift of microwaves or ultrasonic waves

bouncing off a reflector and analyzing the frequency shift of the data to estimate the

corresponding velocities of the object. At single atom level, measuring the motion

of atoms has been playing a significant role in performing high precision inertial

sensing, such as gravity, gravity gradient, and rotation [2]. It has also been used to

study the fundamental physics, including quantum tests of the equivalence principle

[3, 4], and measurements of the fine structure constant [5] and Newton’s constant G

[6]. However, the low probability of the coherent scattering process prohibits precise

measurement of light reflecting off atoms.

Alternatively, measuring the velocity of an atom depends on measuring the

Doppler shift of the absorption spectrum of single atoms in a large atomic ensem-

ble. Due to the thermal broadening of the ensemble, it is indispensable to map out

the velocity distribution of the ensemble to determine the most probable velocity.

One method is the Doppler sensitive two-photon Raman velocimetry that uses a

pair of counter-propagating laser fields to drive a pair of long-lived states of atoms

[7]. By detuning the relative frequency of the counter-propagating laser fields, a

sub-group of atoms with finite velocity width, which is determined by the pulse

duration, can be selected. Due to the finite temperature of the ensemble, the most

probable velocity is then determined by scanning the detuning of the laser fields to

map out the Doppler distribution and fit the Maxwell-Boltzmann distribution with

the data. As a result, the sensitivity is largely limited by the Doppler broadening
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Figure 1.1: A Doppler radar for the forecast (measure the speed of the rain and the

hail) and the severe storm research in Kansas City, US [1].

of the atomic ensemble. To improve the sensitivity, one would have to prepare an

ensemble at ultra-low temperature [8], which requires a complex laser cooling and

trapping setup. In addition, all the measurements must detect the population of

atoms in a particular quantum state by shining a resonant light to the atoms and

record the absorption or fluorescence from the atomic cloud. Such detection meth-

ods destroy the coherent motion of atoms, as a result, each measurement can only

detect an instantaneous moment.

Chabé et al. used laser-cooled spin-polarized Cesium atoms to achieve a ve-

locity resolution of 70 µm/s, or vR/50 (vR is the recoil velocity, whose detail is

explained in Section 2.2.1) [9]. Reference [10] reported a resolution of vR/18 and

Reference [11] reported a resolution of vR/17 (both with Cesium). For Sodium

atoms, 290 µm/s, or vR/100 has been reported in Reference [7]. These results were

a breakthrough achievement, but the repeated ensemble-reloading and the motion

decoherence needed to be improved for the higher efficiency and more experimental

requirements, respectively.

This thesis focuses on the development of the new measuring method that detects

the phase shift of the light passing through a moving collective quantum state instead

of projection measurement of atomic states, and investigating its applications as a

new type of motion sensor. This method is based on light-dragging effect using the
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collective quantum states of an atomic ensemble, therefore, it can sense the center-

of-mass motion of an ensemble directly. In particular, electromagnetically induced

transparency (EIT) phenomenon was applied as a versatile and core technology for

quantum sensing.

In Section 1.1 and Section 1.2, the laser cooling technology of atoms and the

fundamental theory of EIT effect are briefly introduced, respectively. In Chapter

2, we will introduce light dragging effect and use EIT to enhance this effect by

three orders of magnitude and demonstrate a method that can sense the centre-

of-mass motion of an atomic ensemble directly. In Chapter 4, we will show how

to use light dragging effect with EIT to measure the motion of atoms undergoing

Bloch oscillations in an optical lattice. However, to ensure the atomic ensemble

can perform Bloch oscillation efficiently, the temperature of atoms near the recoil

temperature is required. The Raman sideband cooling is, therefore, implemented to

cool 85Rb down to few hundreds nano-Kelvin, which is described in Chapter 3.

1.1 Cold Atoms

Atoms in gas form has been widely used for quantum sensing, metrology, and quan-

tum information. They are ideal platforms for those applications because they are

stable without any decomposition issue, and have simple energy levels due to no

internal rotation and vibration, which is important for manipulating atoms with

light.

For room temperature atoms, the velocity distribution of the atomic ensemble

causes the Doppler broadening on the atomic transitions, which limits the efficiency

and accuracy of atom-light interactions. To avoid this constraint, cooling atoms

down to natural linewidth limit is necessary. However, the most powerful fridge or

cryogenics could only achieve 4 K (liquid Helium) temperature, which corresponds

to a linewidth (FWHM) of its Doppler broadening of about 12 MHz, still larger than

the natural linewidth of most atomic transitions, e.g. 6 MHz for 85Rb.

To achieve a lower temperature, the laser cooling technology was invented and re-

fined since 1970s [12, 13]. The basic idea is to directly reduce the atoms’ momentum

by laser radiation forces, instead of using the heat transfer to another cold reservoir

by collisions in the normal fridges. The early laser cooling techniques for atoms
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could achieve a temperature lower than 50 µK, and it can also make a condition

called “optical molasses” [14], which means that the atoms with a small velocity

distribution can be captured by electro-magnetic fields in some small region. In the

optical molasses, the motional behaviour of atoms is constrained in a very small

range such as that the atoms are sticky with each other, but the friction force in

this case is produced by electro-magnetic fields, not the interaction among atoms.

Therefore, each atom is identical and isolated, which provides a clean and interesting

platform for many applications.

In this experiment, the cooling processes include three parts: Section 1.1.1

Doppler cooling, Section 1.1.2 Magneto-Optical Trap, and Section 1.1.3 Sub-Doppler

Cooling. The practice of the above techniques in this experiment is described in Sec-

tion 1.1.4.

1.1.1 Doppler Cooling

Doppler cooling is a method of laser cooling technologies based on momentum-energy

conservation and Doppler effect [15, 16]. The basic idea is shown as Fig. 1.2.

Photons with a momentum !k can be absorbed by an atom if the frequency of

photons is on-resonant between two energy levels of that atom. The momentum

of photon is then transferred to the atom and changes the velocity of the atom.

Because of the finite natural linewidth of energy levels, the population relaxes back

to the ground state by the spontaneous decay process which emits photons with the

momentum !k isotropically, even in the vacuum [17]. This spontaneous relaxation is

triggered by the electro-magnetic fields in any space, so the propagation direction of

the emission in the relaxation process is isotropic, which results in zero momentum

change of the atoms. As a result, the atom can be slowed down by one !k in one

absorption-emission cycle.

Considering an atom with a momentum p absorbs a photon with a momentum

!k, the new momentum p′ of the atom after the absorption process is:

p′ = p+ !k

p′2 = p2 + (!k)2 + 2!p · k. (1.1)

Using energy conservation, the change of total energy in the process is:
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Figure 1.2: (a) A photon with a momentum !k is about to interact with an atom

at rest; (b) The photon is absorbed by the atom, and transfers its momentum to

the atom; (c) The isotropic relaxation process does not make any change of atom’s

momentum, so an atom can absorb n photons to receive a momentum n!k [15].

E +
p2

2M
+ !ω = E ′ +

p′2

2M
(1.2)

E ′ = E + !(ω − k · v)− (!k)2
2M

. (1.3)

In Eqs. 1.2 and 1.3, E and E ′ are the internal potential energies of the atom before

and after the photon absorption, respectively. !ω is the photon energy. M and v

are mass and velocity of the atom, respectively. (!k)2/2M is the recoil energy. The

recoil energy is equal to the kinetic energy transferred from a single photon to an

atom, which changes the velocity of the atom and is usually very small compared

with E. The term !(ω−k·v) in Eq. 1.3 is the first order Doppler effect, which shows

that the actual photon frequency experienced by the atom is red- or blue- detuned

to ω−k ·v. To decelerate atoms, the photon frequency ω should be red-detuned to

achieve the on-resonant transition in the counter-propagating configuration (k ·v <

0) between atoms and photons for the cooling process.

The Doppler cooling mechanism can be represented by the Doppler friction force

f [18] as:

f± = ±!kΓ

2

Ω2/2

(δ ∓ kv)2 + Γ2/4)
(1.4)

f = f+ − f− ≈ !k2 δΩ2Γ

(δ2 + Γ2/4)2
v, (1.5)

where f+ and f− are the friction forces along and opposite to the axis of atoms’

motion, Γ is the natural linewidth of the excited state, Ω is the Rabi frequency of
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the light-atom interaction, and δ is the photon detuning, which is equal to ω − ωab

(ωab is the energy separation of this two level system, |a⟩ and |b⟩, used in the cooling

process). In the low-velocity limit kv ≪ Γ, δ, the total Doppler friction force f

can be approximated in Eq. 1.5 and is shown in Fig. 1.3. The friction force in

Eq. 1.4 is derived from the rate of momentum transfer from a photon to an atom,

which is equal to !k × γab, where γab is the photon scattering rate on |a⟩ → |b⟩
transition. The frequency response of the friction force is, therefore, the same as

that of the scattering rate. In addition, the friction force spectral profile is shifted

due to Doppler effect. The choice of the detuning δ depends on the capture range of

the line profile. If it is too large, the cooling becomes inefficient because the cooling

temperature limit is set too high in the beginning; if it is too small, there is only a

small fraction of atoms participating in the process. There is one more point should

be noticed: f is proportional to the light intensity (included in Ω2), which is very

different from the behaviour of sub-Doppler cooling (see Section 1.1.3), which is

independent of the light intensity. Owing to random fluctuation of the force, which

gives rise to diffusion in momentum space, the minimum temperature TD of Doppler

cooling is obtained for δ = −Γ/2 [19] as shown in Eq. 1.6. For 85Rb, TD is about

140 µK.

kBTD =
!Γ

2
. (1.6)

1.1.2 Magneto-Optical Trap

The Doppler cooling just offers a mechanism to decelerate atoms’ motion, but atoms

could still diffuse out of the cooling field area. Magneto-Optical Trap (MOT) con-

figuration offers a magnetic potential to confine atoms, as shown in Fig. 1.4. To

confine atoms, a pair of anti-Helmholtz coils (see Fig. 1.5) is applied [20]. It provides

a region of a quadrupole magnetic field as shown in Fig. 1.6, and uses the magnetic

field gradient to produce a position-dependent Zeeman shift on the atoms for the

trapping purpose.

The magnetic field gradient near the central position is a linear function of

positions along x, y, and z axes, where z axis is defined in Fig. 1.5, and x and

y axes are symmetrically identical. In the 1D case along the z-axis, the magnetic

field is Bz(z) = bzz, where b is a constant. The Zeeman shift induced by Bz is
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𝑓− 

𝑓+ 

𝑓 

𝑠0 = 𝑠 𝑣 = 0 =
Ω2/2

𝛿2 + Γ2/4
 

𝛿 = − Γ/2 

Under this approximation, 𝑠(𝑣) ≪ 1, the two radiation pressure forces are: 

𝑓± = ±
ℏ𝑘Γ

2 𝑠± 𝑣     with    𝑠± 𝑣 =
Ω2/2

𝛿 ∓ 𝑘𝑣 2 + Γ2/4 

𝑘𝑣 is the Doppler effect. Note that the velocity 𝑣 is an algebraic quantity. 
The total force is then: 

𝑓 𝑣 =
ℏ𝑘Γ

2 𝑠+ 𝑣 − 𝑠− 𝑣  

 
We have a cooling force if 𝛿 < 0. 
The atom always “facing wind”   
 
The typical velocity capture range is 𝑣 < Γ − 𝛿~Γ 

In the atom rest frame, the frequencies are: 𝛿 ∓ 𝑘𝑣 

5.2.1. Doppler friction force 

5.2. Doppler cooling 

𝑣 in Γ/𝑘 unit 

𝑓 in ℏ𝑘Γ𝑠0/2 unit 

Page: 23/50      Chapter 5: Laser cooling and trapping 

Figure 1.3: The friction forces of f+, f− and total f are a function of the atomic

velocity v with δ = −Γ/2 [18].

Sodium MOT at BCIT (Canada) 

5.3.1. Single particle trap 

5.3. Magneto-optical trap 

Page: 45/50      Chapter 5: Laser cooling and trapping 

Figure 1.4: A schematic of MOT shows the alignment of the cooling laser beams

and the magnetic field produced by a pair of coils. [18]

11



�� #ANADIAN�5NDERGRADUATE�0HYSICS�*OURNAL 70-6.&�***����*446&�� +"/6"3:�����

�-+96)v{u�$5$0(75,=$7,21u)25u7+(u24J3/$1(u6+2:1u)25u$u6,1*/(u&2,/u2)u5$',86u�Iu
&$55<,1*u&855(17u	K
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Figure 1.5: Anti-Helmholtz coils. The

directions of the current flows in two

coils are opposite [20], which produce

a quadrupole magnetic field in the

MOT area.
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quadruple magnetic field on xz plane

shows the magnetic field gradient.

The brightness corresponds to the

field strength [20].

gFµBB(z), where gF is the g-factor including the orbital L, spin S, total J angular

momentum of the electron, and nuclear angular momentum I as shown in Eqs. 1.7

- 1.9 [21], where µB is Bohr magneton e!/2me.

J = L+ S (1.7)

F = L+ S+ I (1.8)

gF ≃ gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
. (1.9)

Combining the Zeeman shift with Doppler cooling, the friction forces in 1D

cooling beams arrangement become:

f± = ±!kΓ

2

Ω2/2

(δ ∓ gFµBb
! z ∓ kv)2 + Γ2/4)

. (1.10)

The cooperation between Doppler cooling and position-dependent Zeeman shift is

explained In Fig. 1.7. The Zeeman effect modifies the detuning based on the

spatial function of the quadrupole magnetic field. The heating effect caused by

the cooling field from the opposite direction could be eased with the help of the

opposite Zeeman shifts. Taking an example in Fig. 1.7, the atoms in + position can
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be decelerated by σ− polarized cooling field and accelerated by σ+ polarized cooling

field. With the Zeeman shifts by the quadruple field, they have lower probability to

absorb σ+ polarized cooling field due to an increased detuning from the cooling field

frequency. The MOT quadruple magnetic field is a function of the space, which not

only increases the cooling efficiency, but also produces a trap with zero magnetic field

near the center, which provides a functionality to gather the atoms near the central

region. The same analysis can be extended to the 3D case. In this experimental

setup, three circularly-polarized light fields are applied as the cooling light sources

described in Section 1.1.4.

We see now how to use the radiation pressure force, not only for cooling, but 
also to trap atoms. One simple and very efficient method consists in using an 
quadrupole magnetic field. This is the magneto-optical trap (MOT). 
 
Lets described the MOT behavior considering an atom having a transition 
𝐽 = 0 → 𝐽 = 1 placed in a constant magnetic field gradient 𝐵 = b′z𝑧 . 
 
This atom is in interaction with two contra-propagating beams of same intensity 
with a detuning δ < 0 and two opposite circular polarizations. 
 

5.3.1. Single particle trap 

5.3. Magneto-optical trap 

𝑒  (𝐽 = 1) 

 𝑔 (𝐽 = 0) 

𝑏′ is the magnetic field gradient. 

Page: 41/50      Chapter 5: Laser cooling and trapping 
Figure 1.7: In |g, J = 0⟩ to |e, J = 1⟩ case, Zeeman shifts change linearly near

the center. σ+ and σ− are the right-hand and left-hand circular polarization of the

cooling fields [18].

1.1.3 Sub-Doppler Cooling

The lowest temperature that can be achieved in Doppler cooling in Eq. 1.6 is

unfortunately still too high for some applications, such as the production of Bose-

Einstein Condensate. In 1988, the first sub-Doppler cooling was demostrated by W.

Phillips’ group in the National Institute of Standards and Technology (NIST) [22].

They developed a new mechanism to overcome the Doppler limit and showed a new

limit of the temperature TR in Eq. 1.11. After many years of studies, the Nobel

Prize in Physics 1997 was jointly awarded to Steven Chu, Claude Cohen-Tannoudji

and William D. Phillips for the development of sub-Doppler cooling mechanisms to

appreciate their contributions in laser cooling technologies and fundamental physics.
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kBTR =
(!k)2
2M

. (1.11)

In Eq. 1.11, TR is called the recoil temperature, which corresponds to the kinetic

energy of the atom with the mass M absorbing one photon with the momentum

!k. The recoil energy kBTR (frequency) in Eq. 1.11 is typically much smaller than

the nature linewidth Γ of the excited state in Eq. 1.6, so sub-Doppler cooling can

achieve a cooling temperature much lower than Doppler limit TD. The mechanism

of sub-Doppler cooling is highly related to the polarization variation of the cooling

field, so it is also called that polarization gradient cooling (PGC). There are two

kinds of configurations, σ+−σ− and lin⊥lin for sub-Doppler cooling schemes. In our

experiment, we use σ+−σ− configuration of light fields. To analyse the mechanism,

the total electric field E(z, t) composed with two counter-propagating light is written

as [23]:

E(z, t) = ε+(z)e(−iωt) + c.c., (1.12)

where the amplitude and polarization term ε+(z) is given by:

ε+(z) = ε0ϵ+e
ikz + ε′0ϵ−e

−ikz (1.13)

ϵ+ = − 1√
2
(ϵx + iϵy) (1.14)

ϵ− =
1√
2
(ϵx − iϵy). (1.15)

In Eq. 1.13, ϵ+ and ϵ− are unit vectors for two opposite circular polarizations, and ε0

and ε′0 are amplitudes of fields with corresponding polarizations. After rearranging

Eq. 1.13, it becomes:

ε+(z) =
1√
2
(ε′0 − ε0)ϵX − i√

2
(ε′0 + ε0)ϵY (1.16)

ϵX = ϵx cos(kz)− ϵy sin(kz) (1.17)

ϵY = ϵx sin(kz) + ϵy cos(kz). (1.18)

From Eq. 1.16, it can be found that these two counter-propagating light fields form

a standing wave with a linear polarization rotating along z-axis, as shown in Fig.

1.8.
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Fig. 1. The two types of polarization gradient in a 1-D molasses and the corresponding light-shifted ground-state sublevels for a Jg = 1/2 Je
= 3/2 atomic transition. (a) a+-a- configuration: two counterpropagating waves, a+ and a- polarized, create a linear polarization that rotates
in space. (b) lin lin configuration: The two counterpropagating waves have orthogonal linear polarizations. The resulting polarization now
has an ellipticity that varies in space: for z = 0 linear polarization along el = (eY + e)/12; for z = X/8 a- polarization; for z = X/4 linear polariza-
tion along 62 = ( - ey)/v2; for z = 3X/8 a+ circular polarization .... (c) Light-shifted ground-state sublevels for the a+-a configuration: The
light-shifted energies do not vary with z. (d) Light-shifted ground-state sublevels for the lin lin configuration: The light-shifted energies
oscillate in space with a period X/2.

means that there are dipole or gradient forces in the configu-
ration of Fig. 1(b), whereas such forces do not exist in the
configuration of Fig. 1(a). We use here the interpretation of
dipole forces in terms of gradients of dressed-state ener-
gies.16 Another equivalent interpretation can be given in
terms of redistribution of photons between the two counter-
propagating waves, when the atom absorbs a photon from
one wave and transfers it via stimulated emission into the
opposite wave.' 2 "0 It is obvious that conservation of angu-
lar momentum prevents such a redistribution from occur-
ring in the configuration of Fig. 1(a).2 ' After it absorbs ao+
photon, the atom is put into e+1/2 or e+3/2, and there are no a-
transitions starting from these levels and that could be used
for the stimulated emission of a a- photon. For more com-
plex situations, such as for a Jg = 1 - J, = 2 transition (see
Fig. 5 below), redistribution is not completely forbidden but
is limited to a finite number of processes. Suppose, for
example, that the atom is initially in g-1. When it absorbs a
a- photon, it jumps to eo. Then, by stimulated emission of a
a- photon, it falls to g+,, from where it can be reexcited to e+2
by absorption of a o-+ photon. However, once in e+2, the
atom can no longer make a stimulated emission in the a-
wave, since no a- transition starts from e+2. We thus have
in this case a limited redistribution, and one can show that,
as in Fig. 1(c), the light-shifted energies in the ground state
do not vary with z (see Subsection 3.B.1). The situation is
completely different for the configuration of Fig. 1(b).
Then, each a-+ or a- transition can be excited by both linear

polarizations e, and ey, and an infinite number of redistribu-
tion processes between the two counterpropagating waves
can take place via the same transition g - em+l or em-1.
This is why the light-shifted energies vary with z in Fig. 1(d).

Finally, let us note that, at first sight, one would expect
dipole forces to be inefficient in the weak-intensity limit
considered in this paper since, in general, they become large
only at high intensity, when the splitting among dressed
states is large compared with the natural width r.'6 Actual-
ly, here we consider an atom that has several sublevels in the
ground state. The light-shift splitting between the two os-
cillating levels of Fig. 1(d) can be large compared with the
width I' of these ground-state sublevels. Furthermore, we
show in Subsection 3.A.2 that for a moving atom, even with
weak dipole forces, the combination of long pumping times
and dipole forces can produce a highly efficient new cooling
mechanism.

3. PHYSICAL ANALYSIS OF TWO NEW
COOLING MECHANISMS
In this section, we consider a multilevel atom moving in a
laser configuration exhibiting a polarization gradient. We
begin (Subsection 3.A) by analyzing the lin I lin configura-
tion of Fig. 1(b), and we show how optical pumping between
the two oscillating levels of Fig. 1(d) can give rise to a new
cooling mechanism analogous to the Sisyphus effect occur-
ring in stimulated molasses.16 "17 Such an effect cannot exist

h.,

y

(C)

J. Dalibard and C. Cohen-Tannoudji

Cy+

- - t
Fy

I

Figure 1.8: The polarization of the standing wave in σ+ − σ− configuration [23].

From Fig. 1.8, it can be seen that the ellipticity of the polarization at all po-

sitions keeps the same. Taking Jg = 1 ↔ Je = 2 transition as an example and

considering the transition probabilities with Clebsch-Gordan coefficients shown in

Fig. 1.9, the population in different ground Zeeman states after optical pumping

with π polarization would be different, where |g−1⟩, |g0⟩, and |g1⟩ in the steady state

are equal to 4/17, 9/17, and 4/17, respectively.

Vol. 6, No. 11/November 1989/J. Opt. Soc. Am. B 2029

9-1 9o 9+1
Fig. 5. Atomic level scheme and Clebsh-Gordan coefficients for a
Jg = 1 Je = 2 transition.

In this subsection we describe a new cooling mechanism
that works in the o-+-o-- laser configuration for atoms with Jg
> 1 and is quite different from the one discussed in Subsec-
tion 3.A. We show that, even at very low velocity, there is an
atomic orientation along Oz that appears in the ground state
as a result of atomic motion. Because of this highly sensi-
tive motion-induced atomic orientation, the two counterpro-
pagating waves are absorbed with different efficiencies,
which gives rise to unbalanced radiation pressures and con-
sequently to a net friction force. We consider here the
simplest possible atomic transition for such a scheme, the
transition Jg = 1 Je = 2 (see Fig. 5).

1. Equilibrium Internal State for an Atom at Rest
We suppose first that the atom is at rest in z = 0. If we take
the quantization axis along the local polarization, which is 
at z = 0 [see Fig. 1(a)], and if we note that Ig_)y, Igo)y, Ig)y,
the eigenstates of Jy (J: angular momentum), we see that
optical pumping, with a 7r polarization along Oy, will concen-
trate atoms in Igo)y, since the optical-pumping rate Ig-), ->
Igo)y proportional to (1/,/2)2(1/)2 = 1/4 is greater than the
rate Igo)y - Ig_)y proportional to (T73)2(11/@)2 = 1/9. The
steady-state populations of g0)y, Ig_1)y, and g+,)y are equal
to 9/17, 4/17, and 4/17, respectively.

We must also note that, since the r transition starting
from Igo)y is 4/3 as more intense as the two r transitions
starting from lg9+)y, both sublevels Ig~,)y undergo the same
light shift A,', smaller (in modulus) than the light-shift A' of
Igo)Y

sublevels adjust themselves to values such that the mean
number of Stokes processes from Igo), to Ig-1), balances the
mean number of anti-Stokes processes from Ig_)y to Igo)y.
It is thus clear that in steady state, the mean number of
photons emitted per unit time at WL + ( 0'/4) and WL - (A0 '/
4) will be equal, giving rise to a symmetrical fluorescence
spectrum.

So far, we have considered only an atom at rest in z = 0. If
the atom is in a different location but still at rest, the same
calculations can be repeated, giving rise to the same values
for the light shifts (since the laser intensity does not change
with z) and to the same steady-state populations. We must
note, however, that the wave functions vary in space, since
the light-shifted Zeeman sublevels are the eigenstates of the
component of J along the rotating laser polarization ey. It
follows that, when the atom moves along Oz, nonadiabatic
couplings can appear among the various Zeeman sublevels
undergoing different light shifts.

2. Moving Atom-Transformation to a Moving Rotating
Frame
The atom is now moving with a velocity v along Oz:

z = Vt. (3.11)

In its rest frame, which moves with the same velocity v, the
atom sees a linear polarization ey, which rotates around Oz in
the plane xOy, making an angle with Oy [see Fig. 1(a) and
Eq. (2.5b)]

= -kz = -kvt. (3.12)

It is then convenient to introduce, in the atomic rest
frame, a rotating frame such that in this moving rotating
frame the laser polarization keeps a fixed direction. Of
course, Larmor's theorem tells us that, in this moving rotat-
ing frame, an inertial field will appear as a result of the
rotation. This inertial field looks like a (fictitious) magnetic
field parallel to the rotation axis Oz and has an amplitude
such that the corresponding Larmor frequency is equal to
the rotation speed k. More precisely, one can show (see
Appendix A) that the new Hamiltonian, which governs the

A0' = 4/,. (3.10)

As in the previous subsection, we take a red detuning so that
A0' and A' are both negative. Figure 6 represents the light-
shifted ground-state sublevels in z = 0 with their steady-
state populations.

For subsequent discussions, it will be useful to analyze
briefly the spectrum of the fluorescence light emitted by an
atom at rest in z = 0. We suppose that the laser power is
very weak ( << r) and that the detuning is large (161 >> r).
To the lowest order in 2/62, we find first a Rayleigh line at
wL corresponding to fluorescence cycles where the atom
starts and ends in the same ground-state sublevel. We also
have a Raman-Stokes line at L + (A0'/4) (remember that
A0' < 0), corresponding to cycles where the atom starts from
Ig0)y and ends in Ig+,)y or Ig.-)y, and a Raman-anti-Stokes
line at WL - (A0'/4), corresponding to the inverse processes
where the atom starts from Ig+,)y or Ig-I)y and ends in Igo)y.
In steady state, the populations of the various ground-state
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Fig. 6. Light-shifted ground-state sublevels of a Jg = 1 Je = 2
transition in the a+-a- configuration. The quantization axis Oy is
chosen along the resulting linear laser polarization. The steady-
state populations of these states (4/17, 9/17, 4/17) are represented
by the filled circles. The double arrows represent couplings be-
tween Zeeman sublevels owing to the transformation to the moving
rotating frame.
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Figure 1.9: Clebsch-Gordan coefficients of Jg = 1 ↔ Je = 2 transition [23].

In addition, the light fields make energy shifts ∆′ of ground state through AC

Stark shift [24], so the difference of transition probabilities between |g0⟩ → |e0⟩
and |g±1⟩ → |e±1⟩ causes the energy splitting of the ground state, as seen in Fig.

1.10. This splitting does not change along z axis because all atoms on the z-axis

experience the same linearly polarized electric field, which is very different from the

mechanism of Sisyphus effect in lin⊥lin configuration [23].

To simplify the theoretical analysis, we assume that ε′0 = ε0 in Eq. 1.16. We

also assume the atoms stay at rest on the origin (z=0), and the electric field of the

cooling field is aligned on y-axis. Now we define y-axis as the quantization axis
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Fig. 5. Atomic level scheme and Clebsh-Gordan coefficients for a
Jg = 1 Je = 2 transition.

In this subsection we describe a new cooling mechanism
that works in the o-+-o-- laser configuration for atoms with Jg
> 1 and is quite different from the one discussed in Subsec-
tion 3.A. We show that, even at very low velocity, there is an
atomic orientation along Oz that appears in the ground state
as a result of atomic motion. Because of this highly sensi-
tive motion-induced atomic orientation, the two counterpro-
pagating waves are absorbed with different efficiencies,
which gives rise to unbalanced radiation pressures and con-
sequently to a net friction force. We consider here the
simplest possible atomic transition for such a scheme, the
transition Jg = 1 Je = 2 (see Fig. 5).

1. Equilibrium Internal State for an Atom at Rest
We suppose first that the atom is at rest in z = 0. If we take
the quantization axis along the local polarization, which is 
at z = 0 [see Fig. 1(a)], and if we note that Ig_)y, Igo)y, Ig)y,
the eigenstates of Jy (J: angular momentum), we see that
optical pumping, with a 7r polarization along Oy, will concen-
trate atoms in Igo)y, since the optical-pumping rate Ig-), ->
Igo)y proportional to (1/,/2)2(1/)2 = 1/4 is greater than the
rate Igo)y - Ig_)y proportional to (T73)2(11/@)2 = 1/9. The
steady-state populations of g0)y, Ig_1)y, and g+,)y are equal
to 9/17, 4/17, and 4/17, respectively.

We must also note that, since the r transition starting
from Igo)y is 4/3 as more intense as the two r transitions
starting from lg9+)y, both sublevels Ig~,)y undergo the same
light shift A,', smaller (in modulus) than the light-shift A' of
Igo)Y

sublevels adjust themselves to values such that the mean
number of Stokes processes from Igo), to Ig-1), balances the
mean number of anti-Stokes processes from Ig_)y to Igo)y.
It is thus clear that in steady state, the mean number of
photons emitted per unit time at WL + ( 0'/4) and WL - (A0 '/
4) will be equal, giving rise to a symmetrical fluorescence
spectrum.

So far, we have considered only an atom at rest in z = 0. If
the atom is in a different location but still at rest, the same
calculations can be repeated, giving rise to the same values
for the light shifts (since the laser intensity does not change
with z) and to the same steady-state populations. We must
note, however, that the wave functions vary in space, since
the light-shifted Zeeman sublevels are the eigenstates of the
component of J along the rotating laser polarization ey. It
follows that, when the atom moves along Oz, nonadiabatic
couplings can appear among the various Zeeman sublevels
undergoing different light shifts.

2. Moving Atom-Transformation to a Moving Rotating
Frame
The atom is now moving with a velocity v along Oz:

z = Vt. (3.11)

In its rest frame, which moves with the same velocity v, the
atom sees a linear polarization ey, which rotates around Oz in
the plane xOy, making an angle with Oy [see Fig. 1(a) and
Eq. (2.5b)]

= -kz = -kvt. (3.12)

It is then convenient to introduce, in the atomic rest
frame, a rotating frame such that in this moving rotating
frame the laser polarization keeps a fixed direction. Of
course, Larmor's theorem tells us that, in this moving rotat-
ing frame, an inertial field will appear as a result of the
rotation. This inertial field looks like a (fictitious) magnetic
field parallel to the rotation axis Oz and has an amplitude
such that the corresponding Larmor frequency is equal to
the rotation speed k. More precisely, one can show (see
Appendix A) that the new Hamiltonian, which governs the

A0' = 4/,. (3.10)

As in the previous subsection, we take a red detuning so that
A0' and A' are both negative. Figure 6 represents the light-
shifted ground-state sublevels in z = 0 with their steady-
state populations.

For subsequent discussions, it will be useful to analyze
briefly the spectrum of the fluorescence light emitted by an
atom at rest in z = 0. We suppose that the laser power is
very weak ( << r) and that the detuning is large (161 >> r).
To the lowest order in 2/62, we find first a Rayleigh line at
wL corresponding to fluorescence cycles where the atom
starts and ends in the same ground-state sublevel. We also
have a Raman-Stokes line at L + (A0'/4) (remember that
A0' < 0), corresponding to cycles where the atom starts from
Ig0)y and ends in Ig+,)y or Ig.-)y, and a Raman-anti-Stokes
line at WL - (A0'/4), corresponding to the inverse processes
where the atom starts from Ig+,)y or Ig-I)y and ends in Igo)y.
In steady state, the populations of the various ground-state
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Fig. 6. Light-shifted ground-state sublevels of a Jg = 1 Je = 2
transition in the a+-a- configuration. The quantization axis Oy is
chosen along the resulting linear laser polarization. The steady-
state populations of these states (4/17, 9/17, 4/17) are represented
by the filled circles. The double arrows represent couplings be-
tween Zeeman sublevels owing to the transformation to the moving
rotating frame.
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Figure 1.10: Energy shifts of the ground state. ∆′
0,±1 means the energy shifts of

|g0,±1⟩. Note all ∆′ are negative due to red-detuned light frequency for cooling

processes and ∆′
0 = (4/3)∆′

±1 can be derived from the ratio of transition probabilities

[23].

of atoms, so the atoms would experience the optical pumping with π polarization,

and |g0,±1⟩y would be the eigenstates of Jy (J is the angular momentum operator).

However, when the atoms are moving on z-axis, they would feel a rotating electric

field. If we describe the atoms in a rotating and moving frame, the inertial fields

which act on atoms keep the same as that at rest, but append an extra magnetic field

energy coming from the rotating frame along z-axis. Based on the real condition,

we made two assumptions:

Γ′ ≪ |∆′| ≪ Γ (1.19)

kv ≪ |∆′|. (1.20)

In Eq. 1.19, Γ′ is the scattering rate of the ground state for population transfers

during the cooling process, and Γ is the atomic natural linewidth of the excited

state, the same as the definition in Eq. 1.4. In Eq. 1.20, k is the wavenumber of the

cooling field; v is the velocity of the atom, the same as that in Eq. 1.3. From Eqs.

1.19 and 1.20, the energy splitting among different Zeeman states is much larger

than the linewidth of each level, which makes sub-Doppler cooling possible to work.

The light shift ∆′ is tuned to be much smaller than Γ, which makes the friction force

f of sub-Doppler cooling is much larger than Doppler cooling (it will be explained

later). The parameter kv with the atomic velocity is supposed to be much smaller

than the light shift ∆′, because extra Zeeman shifts show up when the velocity is
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too high, which can destroy the working procedures of sub-Doppler cooling. It is

why sub-Doppler cooling has to follow Doppler cooling to work in the whole cooling

process, and we can treat it as a perturbation in the analysis.

We apply the perturbation theory to calculate the effect from the extra magnetic

field, which potential Vmov could be shown as:

Vmov = kvJz. (1.21)

Because Jy and Jz cannot commute, the perturbed eigenstates |g0,±1⟩y at rotating

moving frame would be the linear combination of |g0,±1⟩y as a function of the energy

shifts ∆′ and the velocity factor kv shown in Eqs. 1.22 and 1.23:

|g0⟩y = |g0⟩y +
kv√

2(∆′
0 − ∆′

1)
(|g+1⟩y + |g−1⟩y) (1.22)

|g±1⟩y = |g±1⟩y −
kv√

2(∆′
0 − ∆′

1)
|g0⟩y. (1.23)

Since the circularly polarized light is used as the cooling source, so we calculate the

average amount of Jz [23] as:

⟨Jz⟩ = y⟨g0|Jz|g0⟩y + y⟨g+1|Jz|g+1⟩y + y⟨g−1|Jz|g−1⟩y =
40

17

!kv
∆′

0

. (1.24)

⟨Jz⟩ is proportional to the population difference between |g+1⟩z and |g−1⟩z. Owing

to the different transition probabilities between |g+1⟩z and |g−1⟩z interacting with

two circularly polarized cooling fields (see Fig. 1.9), if the atom is moving toward

+z direction (v > 0), the population on |g−1⟩z is more than that on |g+1⟩z, so the σ−

transition dominates in this case. In our example model in Fig. 1.8, the light field

with σ− polarization propagates in -z direction, which makes the atom decelerated.

The same situation happens to the atom moving toward -z direction. To quantize

the ability of sub-Doppler cooling, the friction force f can be derived as:

f =
dp

dt
=

⟨Jz⟩
! · !k · Γ′ ≈ !k2 Γ′

∆′v. (1.25)

Under the low-intensity limit such as |∆′| ≪ Γ (see Eq. 1.19) and Ω ≪ Γ, the

approximations of Γ′ and ∆′ are given as follows [23]:
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Γ′ ≈ Ω2Γ

δ2
(1.26)

∆′ ≈ Ω2

δ
. (1.27)

The friction force of sub-Doppler cooling can then be approximated as:

f ≈ !k2Γ

δ
v. (1.28)

If we compare the orders of magnitude of the friction forces of sub-Doppler

cooling and Doppler cooling (fDoppler ≈ Ω2/δ2×fsub-Doppler, see Eq. 1.5), we can find

that sub-Doppler cooling can offer much stronger friction forces than that Doppler

cooling does, because the detuning δ has the same order as Γ in the cooling process.

In addition, the friction forces are independent of the intensity of the cooling light

field as Eq. 1.28 shows, because the intensity terms, which are proportional to Ω2

in Γ′ and ∆′, cancel each other in Eq. 1.25.

Sub-Doppler cooling is widely-used in the production of cold atoms following

the Doppler cooling process, because the operation in the experiment is straightfor-

ward, even though some fraction of atoms are lost during the process. Although

a combination of Doppler and sub-Doppler cooling can typically cool down atoms

to a few tens µK, it is still not sufficient for some applications that require atoms

in the recoil temperature range. To improve this situation, a cooling method that

can bring the temperature of atoms down to recoil temperature is required, such as

Raman sideband cooling. Our implementation of Raman sideband cooling will be

described in Chapter 3.

1.1.4 Equipment and Time Sequence

In this experiment, the cold atomic ensemble was produced and maintained by a

commercial MOT equipment (miniMOT from ColdQuanta), as shown in Figs. 1.11

and 1.12. The miniMOT package is a combo set that provides the cooling beam

alignment, MOT coils, Rb atom dispenser, quartz cell vacuum chamber, built-in ion

pump and control units. It is a compact setup but we modified it to fit our needs:

1. We rearranged the MOT beams optics so that other experimental apparatus,

such as the RF waveguide and CCD camera, can be brought close to atoms.
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Figure 1.11: miniMOT chamber and its package. The atom chamber, MOT coils

and the path of cooling fields are indicated in the figure.

Figure 1.12: miniMOT package in our experimental setup. The atom chamber,

MOT coils, the path of cooling fields, RF waveguide and CCD are indicated in the

figure.
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2. The vacuum pressure indicator was broken after a year of operation. We used

the MOT loading time to gauge the vacuum pressure inside the chamber.

3. The current control of the coil is not programmable, so we modified the power

supply of the coil pair to have full control of its current, and connect it to our home-

made voltage-control current box (see Appendix A.1). Owing to this modification

and an analogue voltage-control channel in our controlling system (ADbasic from

ADwin), the strength of the magnetic field for our MOT can be programmed.

4. The factory-set maximum current of MOT coil is 1 A. This limits the at-

tainable current for the compressed MOT [25], which requires a current of a few

amperes. We used extra coils in the crowded space near the chamber to make this

trick barely feasible.
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Figure 1.13: The time sequence near the end of the cold atoms production. The

four voltage-controlled parameters are the cooling field power, the coil current, the

cooling field detuning and the repump field power. The shown time in this figure

started after 1-2 s cold atoms production with full power of the cooling field, the

MOT magnetic field and the repump field (the control voltage of the cool field power,

the coil current, the cooling field detuning and the repump field power were 5 V, 5

V, 5 V and 0.5 V, respectively).

We coupled the red-detuned cooling field and the on-resonant repump field into a
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single-mode polarization-maintaining (PM) optical fibre and guided these two fields

into the miniMOT package as shown on the right-hand side of Fig. 1.11. A telescope

expanded the beam into a diameter of about 1 cm. A beam splitter followed by a

quarter waveplate (QWP) separated the beam into three parts and converted their

polarization into the circular polarization. These three beams were then guided to

the center of the glass cell chamber by three square gold mirrors. They were retro-

reflected back by three gold mirrors to form a three-dimensional MOT geometry

together with the quadrupole magnetic trap.

Figure 1.13 shows the time sequence close to the end of the cooling process. We

usually build and load the cold atoms from the dispensor for 1-2 s, and increase the

current of MOT coils at 24th ms to start the MOT compression (see the timescale

in Fig. 1.13). During the compressed MOT stage (24th - 38th ms), the cooling

field power linearly decreased to 98% of the initial power, meanwhile, the cooling

field detuning (absolute values) also linearly increased from -15 to -31 MHz, which

means the cooling field releases those cooled and trapped atoms from the shallower

and shallower optical lattice built by the cooling field. The coil current (magnetic

field) linearly increased from 1 to 1.02 A to make the magnetic trap deeper and

denser in space. However, it cannot be increased more due to the current limitation

of miniMOT. At about 50th ms, the magnetic field was sharply turned off within 0.1

ms, the cooling field power and detuning were reduced to 20% of the initial power

and -50 MHz, respectively. Sub-Doppler cooling stage started to cool down atoms

to 30 µK of our 85Rb atomic ensemble.

The green line in Fig. 1.13 indicates the relative power of the repump field. The

repump field was used to prevent the optical pumping of atoms to other dark states

due to the detuning of the cooling field. The power of the repump field was 1/20 of

the cooling field power, which was linearly reduced to 0 from 8th to 21st ms, because

we tended to transfer the population to the dark state during the period close to

the ending of Doppler cooling stage. This strategy is called “dark MOT”, which

reduced the heating effect caused by the optical pumping from the cooling field and

the repump field, so that we could get a colder atomic ensemble before sub-Doppler

cooling stage.
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1.2 EIT Scheme

Electromagnetically induced transparency (EIT) is a non-linear optical phenomenon,

which involves the interaction among a non-linear medium and multi-photons to

achieve the quantum interference, found in 1990 [26]. As shown in Fig. 1.14, a simple

EIT scheme can be implemented in a three-level atomic system, wherein two lower

atomic states |1⟩ and |2⟩ with long coherence time are coupled to a third state |3⟩
by optical excitations. A control field resonating on the |2⟩ → |3⟩ transition creates

a quantum interference with a probe field resonating on the |1⟩ → |3⟩ transition.

The “transparent” phenomenon of EIT means that the on-resonant probe field is

not absorbed because of the presence of the control field, which can be explained in

two pictures: dressed atom picture and bare atom picture, see Figs. 1.14 and 1.15.

Figure 1.14: Dressed atom picture for EIT mechanism.

Dressed atom picture is a way to describe atom-photon interaction [27], where

atom states (|1⟩, |2⟩, |3⟩ · · · ) dress up photon number states (|N⟩, |N+1⟩ · · · ). When

the photons are resonant on the transition of the two level system of an atom, the

special dressed quantum states are given as Eqs. 1.29 and 1.30:

|a(N)⟩ = 1√
2
(|2, N + 1⟩+ |3, N⟩) (1.29)

|b(N)⟩ = 1√
2
(|2, N + 1⟩ − |3, N⟩). (1.30)

The definitions of |a(N)⟩ and |b(N)⟩ are shown in Fig. 1.14. Note that the energy

levels of |a(N)⟩ and |b(N)⟩ are separated by a energy splitting !Ω, so the probe field

becomes off-resonant. In addition, the energy splitting !Ω is proportional to the

square root of the control field intensity, and off-resonant transitions are still possible

22



to occur in a lower probability. To achieve the obvious transparency phenomenon,

the intensity ratio of the control field to the probe field should be as large as possible.

In our experiment, the intensity ratio is about 10.

Figure 1.15: Bare atom picture for EIT mechanism.

In bare atom picture, we can use double two-level systems to explain the EIT

mechanism.

Ψ = ca(t)e
−iωat|a⟩+ cb(t)e

−iωbt|b⟩ (1.31)

ca(t) = cos(
Ω

2
t) ⇒ |ca(t)|2 =

1 + cos(Ωt)

2
(1.32)

cb(t) = sin(
Ω

2
t) ⇒ |cb(t)|2 =

1− cos(Ωt)

2
. (1.33)

Equations 1.31 - 1.33 are the descriptions of two-level system |a⟩ and |b⟩ of an

atom interacting with an optical field with a Rabi frequency Ω. We take |1⟩ and |3⟩
in Fig. 1.15 as |a⟩ and |b⟩ in Eq. 1.31, and all the population are initially in the

state |a⟩ (ca(0) = 1). The population in |a⟩ can be transferred to |b⟩ by a π pulse

with the time π/Ωp. Now we take |3⟩ and |2⟩ in Fig. 1.15 as |a⟩ and |b⟩ in Eq. 1.31.

If the Rabi frequency Ωc of the control field is large enough, the control field can

give the atom a (2+4n)π pulse (n can be 0 or any positive integer) within the time

(2+4n)π/Ωc. When the time is still shorter than the π pulse time π/Ωp of the probe

field, the destructive interference could occur on |3⟩, where no transition is allowed

on |1⟩ → |3⟩ transition (see Fig. 1.16).

In the quantitative analysis, because the coherence of atomic states is crucial

for the quantum interference in EIT process (see Section 1.2.3), the density matrix

is more suitable to describe the EIT effect. As shown in Fig. 1.17, by taking the

spontaneous relaxation rate Γ and the dephasing rate γ into account, the equation

of motion with the density matrix is [28]:
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Figure 1.16: The detail of EIT mechanism for the bare atom picture.

Figure 1.17: EIT three-level system with spontaneous relaxation rate Γ, dephasing

rate γ due to collisions among atoms, single-photon detuning ∆ and two-photon

detuning δ.

24



dρ

dt
=

1

i! [H, ρ] +

⎡

⎢⎢⎣

Γ31ρ33 −γ21ρ12 −(Γ31
2 + γ31)ρ13

−γ21ρ21 Γ32ρ33 −(Γ32
2 + γ32)ρ23

−(Γ31
2 + γ31)ρ31 −(Γ32

2 + γ32)ρ32 −(Γ31 + Γ32)ρ33

⎤

⎥⎥⎦ . (1.34)

Solving Eq. 1.34, the electric susceptibility χ(1) for the probe field can be obtained

as follows:

χ(1)(−ωp,ωp) ∝ ρ31 ∝
4δ(|Ωc|2 − 4δ∆)− 4∆Υ2

21

||Ωc|2 + (Υ31 + i2∆)(Υ21 + i2δ)|2

+ i
8δ2Υ31 + 2Υ21(|Ωc|2 + Υ21Υ31)

||Ωc|2 + (Υ31 + i2∆)(Υ21 + i2δ)|2 , (1.35)

where ∆ and δ are single-photon detuning (ω31 − ωp) and two-photon detuning

(ω21 − (ωp − ωc)), respectively. Γ and γ are the spontaneous relaxation rate and

dephasing rate, respectively, as indicated in Fig. 1.17. Υ31 = Γ31/2 + Γ32/2 + γ31.

Υ21 = γ21 (Γ21 = 0). Because Eq. 1.35 has a complicated form and includes many

variables, some special conditions will be discussed.

1.2.1 χ(1) Diagrams

Figure 1.18 shows the behaviour of EIT effects. When each parameters in Eq. 1.35

are fixed except ωp (∆ = δ in this case), the EIT produces a narrow spectral window

in Re[χ(1)] and Im[χ(1)] diagrams. Figure 1.18 also shows the potential application

called “slow light”. Owing to the very narrow EIT spectral window, the slope of

Re[χ(1)] to the frequency can be very large, which makes the group velocity vg (see

Eq. 1.36) of the light in the EIT medium much smaller than the light speed c in

the vacuum, so the interaction time between light and EIT medium would be much

longer than normal condition. We apply this dispersive condition for demonstrating

the light-dragging effect in Chapter 2.

vg =
c

n+ ωp(
dn
dωp

)
(1.36)

1.2.2 Ωc Parameter

The magnitudes of Ωc are related to the intensity of the control field. Figure 1.19

shows the correlation between the width of the EIT window and Ωc, which is con-
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Figure 1.18: The plots of the refractive index Re[χ(1)] and the absorbance Im[χ(1)]

as a function of normalized ∆. Dashed lines are the conditions without the control

field, and solid lines are the conditions with the control field [28].

sistent with the results of the dressed atom picture in Fig. 1.14.

rather than a simple line splitting. Before proceeding
with this discussion, we highlight some of the other im-
portant properties that emerge in Eq. !13".

First and foremost it must be noted that the possibility
of eliminating absorption in an otherwise optically thick
medium has been demonstrated in several laboratories
in systems ranging from hot atomic vapor cells to mag-
netically trapped Bose-condensed atoms. Figure 8 shows
the absorption profile obtained in the first experiment to
demonstrate the effect, carried out by Boller and co-
workers !Boller et al., 1991". The application of a
coupling field opens up a transparency window in an
otherwise completely opaque atomic cell. This experi-
ment was carried out using an autonionizing state #3$
of strontium with !31%2" 1011 s−1. The decay rate of the
lower state coherence !21%4" 109 s−1 is determined
by the collisional broadening for an atomic density of
ϱ%5" 1015 cm−3.

The transparency obtained at two-photon resonance
is independent of the detuning of the probe field from
the bare #1$-#3$ transition !#". As # increases, however,
the distance between the frequencies where one obtains
transparency and maximum absorption becomes smaller,
thereby limiting the width of the transparency window.
At the same time, the transmission profile and the asso-
ciated dispersion become highly asymmetric for #$ !31.
Figure 9 shows contour plots of Im&%!1"' as a function of
the detunings #1 and #2 of the two fields as well as the
single-photon !#" and two-photon !&" photon detunings.
It is evident that for large detuning #2 of the coupling
field the absorption spectrum is essentially that of a two-
level system with an additional narrow Raman peak
close to the two-photon resonance. Exactly at the two-
photon resonance point #1=#2 the absorption vanishes
independent of the single-photon detuning.

In the limit #2=0 and for 'c( !31, the real part of the
susceptibility seen by a probe field varies rapidly at reso-
nance !#%0". In contrast to the well-known !single"
atomic resonances, the enhanced dispersion in the EIT
system is associated with a vanishing absorption coeffi-

cient, implying that ultraslow group velocities for light
pulses can be obtained in transparent media, which will
be discussed extensively in the following section.

Typically, observation of coherent phenomena in
atomic gases is hindered by dephasing due to collisions
and laser fluctuations as well as inhomogeneous broad-
ening due to the Doppler effect. While recent EIT ex-
periments have been carried out using ultracold atomic
gases driven by highly coherent laser fields, where Eq.
!9" provides a perfect description of the atomic dynam-
ics, it is important to analyze the robustness of EIT
against these nonideal effects.

In actual atomic systems, the dephasing rate of the
forbidden #1$-#2$ transition is nonzero due to atomic col-
lisions. All the important features of EIT remain observ-
able even when !21!0, provided that the coupling field
Rabi frequency satisfies

#'c#2 ) !31!21. !14"

Figure 10 shows the imaginary part of %!1"!−*p ,*p" for
!21=0 &Fig. 10!a"', !21=0.1!31 &Fig. 10!b"', and !21
=10!31 &Fig. 10!c"'. In all plots, we take 'c=0.5!31. We
first note from Fig. 10!b" that the absorption profile ap-
pears virtually unchanged with respect to the ideal case,
provided that the inequality !14" is satisfied. The trans-
parency is no longer perfect, however, and the residual

FIG. 7. EIT absorption spectrum for different values of cou-
pling field and !21=0: !a" 'c=0.3!31; !b" 'c=2!31.

FIG. 8. First experimental demonstration of EIT in Sr vapor
by Boller et al., 1991: top, transmission through cell without
coupling field; bottom, with coupling field on. From Boller et
al., 1991.
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Figure 1.19: The plots of the absorbance Im[χ(1)] as a function of normalized ∆

with two different Ωc: (a) Ωc = 0.3Υ31; (b) Ωc = 2Υ31 [28].

1.2.3 Υ21 Parameter

EIT uses the coherence between two ground states for quantum interference. How-

ever, the total dephasing process would destroy the coherence between these two

ground states, as shown in Fig. 1.20. The total dephasing rate Υ includes the spon-

taneous decay rate Γ and the dephasing rate γ from collisions among atoms, which
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is the reason why the two hyperfine ground states are chosen as |1⟩ and |2⟩ to avoid

the spontaneous decay process between them.

absorption due to !21 provides a fundamental limit for
many of the EIT applications. For the !21" !31 case de-
picted in Fig. 10!c", the absorption minimum is absent: in
this limit a constructive interference enhances the ab-
sorption coefficient in between the two peaks.

The linear susceptibility given in Eq. !13" depends
only on the total coherence decay rates, and not on the
population decay rates of the atomic states. As a conse-
quence, the strong quantum interference effects de-
picted in Figs. 3!a"–3!c" are observable even in systems
where collisional broadening dominates over lifetime
broadening. This implies that EIT effects can be ob-
served in dense atomic gases, or even solids, provided
that there is a metastable transition with a relatively
long dephasing rate that satisfies !21# !31. EIT in such a
collisionally broadened atomic gas was first reported in
1991 !Field et al., 1991".

Amplitude or phase fluctuations of the nonperturba-
tive coupling laser can have a detrimental effect on the
observability of EIT. Instead of trying to present a gen-
eral analysis of the effect of coupling laser linewidth on
linear susceptibility, we discuss several special cases that
are of practical importance. When the laser linewidth is
due to phase fluctuations that can be modeled using the
Wiener-Levy phase-diffusion model, it can be shown
that the resulting coupling laser linewidth directly con-
tributes to the coherence decay rates !21 and !32 !Ima-
moglu, 1991". In contrast, for a coupling field with large
amplitude fluctuations, the absorption profile could be
smeared out. In applications where a nonperturbative
probe field is used, fluctuations in both laser fields are
important. If, however, the two lasers are obtained from
the same fluctuating laser source using electro-optic or
acousto-optic modulation, then EIT is preserved to first
order.

Doppler broadening is ubiquitous in hot atomic gases.
If the lambda system is based on two hyperfine-split
metastable states #1$ and #2$, then the Doppler broaden-
ing has no adverse effect on EIT, provided that one uses
copropagating probe and coupling fields. In other cases,
the susceptibility given in Eq. !13" needs to be integrated
over a Gaussian density of states corresponding to the
Gaussian velocity distribution of the atoms. Qualita-
tively, the presence of two-photon Doppler broadening
with width $%Dopp&'c will wash out the level splitting
and the interference. EIT can be recovered by increas-
ing the coupling field intensity so as to satisfy 'c
&$%Dopp; in this limit we obtain

Im%(!1"!− )p,)p"&)p=)31
*

$%Dopp
2 !31

'c
4 . !15"

This strong dependence on reciprocal 'c is a direct con-
sequence of robust quantum interference. We emphasize
that in this large coupling field limit, we can consider 'c
as the effective detuning from dressed-state resonances.
As a result of quantum interference, this effective detun-
ing can be used to suppress absorption much more
strongly than in noninterfering systems, where the ab-
sorption coefficient is only proportional to the inverse
detuning squared.

FIG. 9. Contour plot of imagi-
nary part of susceptibility
Im%(!1"&: left, as a function of
detunings $1 and $2; right, as a
function of single-photon de-
tuning $ and two-photon de-
tuning + in units of !31. White
areas correspond to low absorp-
tion, dark to large absorption.
The insensitivity of the induced
transparency at +=0 on the
single-photon detuning is ap-
parent.

FIG. 10. Absorption spectrum for nonvanishing decay of #2$-#1$
transition in arbitrary units: !a" !31=1, !21=0; !b" !31=1, !21
=0.1; !c" !31=1, !21=10. In all cases 'c=0.5.
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Figure 1.20: The diagrams of the absorbance Im[χ(1)] as a function of normalized

∆ with three different Υ21: (a) Υ21 = 0; (b) Υ21 = 0.1Υ31; (c) Υ21 = 10Υ31 [28].

1.2.4 ∆ and δ Parameter

From Fig. 1.21, we can see all Im[χ(1)] are 0 if the δ keeps 0, which shows the reason

why the efficiency of EIT is sensitive to the two-photon detuning δ, rather than the

single-photon detuning ∆.

In addition, if a large detuning of the control field ∆c is chosen as shown in

Fig. 1.22, the EIT spectrum would show a non-symmetrical behaviour [29, 30]. An

advanced cooling technology called EIT cooling takes advantage of the narrow line

in Fig. 1.23 to suppress the transitions of the carrier (v → v, ∆v = 0, where v

is the quantum number of vibrational levels in the optical lattice) and the heating

process (∆v > 0) [30], to obtain the similar performance as Raman sideband cooling

(discussed in Chapter 3).
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absorption due to !21 provides a fundamental limit for
many of the EIT applications. For the !21" !31 case de-
picted in Fig. 10!c", the absorption minimum is absent: in
this limit a constructive interference enhances the ab-
sorption coefficient in between the two peaks.

The linear susceptibility given in Eq. !13" depends
only on the total coherence decay rates, and not on the
population decay rates of the atomic states. As a conse-
quence, the strong quantum interference effects de-
picted in Figs. 3!a"–3!c" are observable even in systems
where collisional broadening dominates over lifetime
broadening. This implies that EIT effects can be ob-
served in dense atomic gases, or even solids, provided
that there is a metastable transition with a relatively
long dephasing rate that satisfies !21# !31. EIT in such a
collisionally broadened atomic gas was first reported in
1991 !Field et al., 1991".

Amplitude or phase fluctuations of the nonperturba-
tive coupling laser can have a detrimental effect on the
observability of EIT. Instead of trying to present a gen-
eral analysis of the effect of coupling laser linewidth on
linear susceptibility, we discuss several special cases that
are of practical importance. When the laser linewidth is
due to phase fluctuations that can be modeled using the
Wiener-Levy phase-diffusion model, it can be shown
that the resulting coupling laser linewidth directly con-
tributes to the coherence decay rates !21 and !32 !Ima-
moglu, 1991". In contrast, for a coupling field with large
amplitude fluctuations, the absorption profile could be
smeared out. In applications where a nonperturbative
probe field is used, fluctuations in both laser fields are
important. If, however, the two lasers are obtained from
the same fluctuating laser source using electro-optic or
acousto-optic modulation, then EIT is preserved to first
order.

Doppler broadening is ubiquitous in hot atomic gases.
If the lambda system is based on two hyperfine-split
metastable states #1$ and #2$, then the Doppler broaden-
ing has no adverse effect on EIT, provided that one uses
copropagating probe and coupling fields. In other cases,
the susceptibility given in Eq. !13" needs to be integrated
over a Gaussian density of states corresponding to the
Gaussian velocity distribution of the atoms. Qualita-
tively, the presence of two-photon Doppler broadening
with width $%Dopp&'c will wash out the level splitting
and the interference. EIT can be recovered by increas-
ing the coupling field intensity so as to satisfy 'c
&$%Dopp; in this limit we obtain

Im%(!1"!− )p,)p"&)p=)31
*

$%Dopp
2 !31

'c
4 . !15"

This strong dependence on reciprocal 'c is a direct con-
sequence of robust quantum interference. We emphasize
that in this large coupling field limit, we can consider 'c
as the effective detuning from dressed-state resonances.
As a result of quantum interference, this effective detun-
ing can be used to suppress absorption much more
strongly than in noninterfering systems, where the ab-
sorption coefficient is only proportional to the inverse
detuning squared.

FIG. 9. Contour plot of imagi-
nary part of susceptibility
Im%(!1"&: left, as a function of
detunings $1 and $2; right, as a
function of single-photon de-
tuning $ and two-photon de-
tuning + in units of !31. White
areas correspond to low absorp-
tion, dark to large absorption.
The insensitivity of the induced
transparency at +=0 on the
single-photon detuning is ap-
parent.

FIG. 10. Absorption spectrum for nonvanishing decay of #2$-#1$
transition in arbitrary units: !a" !31=1, !21=0; !b" !31=1, !21
=0.1; !c" !31=1, !21=10. In all cases 'c=0.5.

641Fleischhauer, Imamoglu, and Marangos: Electromagnetically induced transparency

Rev. Mod. Phys., Vol. 77, No. 2, April 2005

Figure 1.21: The contour plot of Im[χ(1)] as a function of normalized ∆ (∆/Υ31)

and δ (δ/Υ31), the darkness corresponds to the absolute value of Im[χ(1)] [28].

absorption due to !21 provides a fundamental limit for
many of the EIT applications. For the !21" !31 case de-
picted in Fig. 10!c", the absorption minimum is absent: in
this limit a constructive interference enhances the ab-
sorption coefficient in between the two peaks.

The linear susceptibility given in Eq. !13" depends
only on the total coherence decay rates, and not on the
population decay rates of the atomic states. As a conse-
quence, the strong quantum interference effects de-
picted in Figs. 3!a"–3!c" are observable even in systems
where collisional broadening dominates over lifetime
broadening. This implies that EIT effects can be ob-
served in dense atomic gases, or even solids, provided
that there is a metastable transition with a relatively
long dephasing rate that satisfies !21# !31. EIT in such a
collisionally broadened atomic gas was first reported in
1991 !Field et al., 1991".

Amplitude or phase fluctuations of the nonperturba-
tive coupling laser can have a detrimental effect on the
observability of EIT. Instead of trying to present a gen-
eral analysis of the effect of coupling laser linewidth on
linear susceptibility, we discuss several special cases that
are of practical importance. When the laser linewidth is
due to phase fluctuations that can be modeled using the
Wiener-Levy phase-diffusion model, it can be shown
that the resulting coupling laser linewidth directly con-
tributes to the coherence decay rates !21 and !32 !Ima-
moglu, 1991". In contrast, for a coupling field with large
amplitude fluctuations, the absorption profile could be
smeared out. In applications where a nonperturbative
probe field is used, fluctuations in both laser fields are
important. If, however, the two lasers are obtained from
the same fluctuating laser source using electro-optic or
acousto-optic modulation, then EIT is preserved to first
order.

Doppler broadening is ubiquitous in hot atomic gases.
If the lambda system is based on two hyperfine-split
metastable states #1$ and #2$, then the Doppler broaden-
ing has no adverse effect on EIT, provided that one uses
copropagating probe and coupling fields. In other cases,
the susceptibility given in Eq. !13" needs to be integrated
over a Gaussian density of states corresponding to the
Gaussian velocity distribution of the atoms. Qualita-
tively, the presence of two-photon Doppler broadening
with width $%Dopp&'c will wash out the level splitting
and the interference. EIT can be recovered by increas-
ing the coupling field intensity so as to satisfy 'c
&$%Dopp; in this limit we obtain

Im%(!1"!− )p,)p"&)p=)31
*

$%Dopp
2 !31

'c
4 . !15"

This strong dependence on reciprocal 'c is a direct con-
sequence of robust quantum interference. We emphasize
that in this large coupling field limit, we can consider 'c
as the effective detuning from dressed-state resonances.
As a result of quantum interference, this effective detun-
ing can be used to suppress absorption much more
strongly than in noninterfering systems, where the ab-
sorption coefficient is only proportional to the inverse
detuning squared.

FIG. 9. Contour plot of imagi-
nary part of susceptibility
Im%(!1"&: left, as a function of
detunings $1 and $2; right, as a
function of single-photon de-
tuning $ and two-photon de-
tuning + in units of !31. White
areas correspond to low absorp-
tion, dark to large absorption.
The insensitivity of the induced
transparency at +=0 on the
single-photon detuning is ap-
parent.

FIG. 10. Absorption spectrum for nonvanishing decay of #2$-#1$
transition in arbitrary units: !a" !31=1, !21=0; !b" !31=1, !21
=0.1; !c" !31=1, !21=10. In all cases 'c=0.5.
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Δc < 0

Δc > 0

Δc = 0

Figure 1.22: The axis of normalized

∆ marked on Fig. 1.21 with different

detunings of the control field ∆c [28];

the yellow line is the case with a sym-

metrical spectrum like Fig. 1.18; the

red lines perform two opposite non-

symmetrical spectra, one of them is

like Fig. 1.23

consists in two electronic transitions, formed by two stable
or metastable states that we label !g1!, !g2!, which are
coupled by lasers to the same excited state !e!. For a closed
transition, the atom stops to fluoresce when the states !g1!
and !g2! are resonantly coupled "two-photon resonance#, as
shown in Fig. 1"a#: The system evolves into the dark state, a
stable atomic-states superposition that is decoupled from the
excited state because of destructive interference between the
excitation amplitudes. This phenomenon is called coherent
population trapping $7%, and the atoms are found in the co-
herence "dark state#

!&D!!
1
'

"'2!g1!"'1!g2!), "1#

where '!!'1
2#'2

2 and '1 ('2) is the Rabi frequency of
the laser coupling to the transition !g1!→!e! (!g2!→!e!).
Here, without loss of generality, we have assumed '1 , '2 to
be real. The dark state is accessed by spontaneous emission,
unless the system has been initially prepared in it. Thus, the
density matrix (D!!&D!)&D! is the steady-state solution of
the master equation for the atomic density matrix (: *(/*t
!L0( , where L0 is the Liouvillian defined as

L0(!
1
i+ $H ,(%#K( . "2#

Here, H!H0#V0 is the Hamilton operator, and its terms
have the form "in the rotating wave approximation and in the
frame rotating at the laser frequencies#

H0!"+," !g1!)g1!#!g2!)g2!#, "3#

V0!
+

2 "'1!e!)g1!#'2!e!)g2!#H.c.#, "4#

where ,!-1"-L,1!-2"-L,2 are the laser detunings, with
the atomic resonance frequencies - j of the transition !g j!
→!e! and the frequencies of the corresponding driving laser
-L, j ( j!1,2). The operator K is the Liouvillian describing
spontaneous emission,

K(!"
.

2 $ !e!)e!(#(!e!)e!%# /
j!1,2

. j!g j!)e!(!e!)g j!,

"5#

where .1 , .2 are the rates of decay into !g1!, !g2!, respec-
tively, and .1#.2!. . It can be easily verified that the dark
state is a dressed state of the system, i.e. an eigenstate of H.
The other two dressed states read $16%

!0#!!cos 1!e!#sin 1!0C! , "6#

!0"!!sin 1!e!"cos 1!0C! , "7#

where

tan 1!
!,2#'2",

'
, "8#

!0C!!
1
'

"'1!g1!#'2!g2!), "9#

and where we have introduced the state !0C!, orthogonal to
!e! and !0D! . The states "6# and "7# are at eigenfrequencies
2-$!(,%!,2#'2)/2, and since they possess a nonzero
overlap with the excited state !e!, they have a finite decay
rate and are populated in the transient dynamics. We denote
their linewidths with .# , ." . The steady state is accessed at
the slowest rate of decay and, for later convenience, we in-
troduce T0, the time scale corresponding to the inverse of
this rate.
The dressed-state picture is a useful tool for interpreting

the atomic spectra in a pump-probe experiment, where, e.g.,
a weak probe at Rabi frequency 'P ('P&'1 ,'2) couples
to the transition !g1!→!e! as shown in Fig. 1"b#, while its
frequency is let sweep across the atomic resonance. Figure 2
shows the spectrum of excitation as a function of the detun-
ing of the probe ,P , for a certain choice of the lasers param-
eters. Here, one can observe that the component of the spec-
trum at ,P!, is zero, corresponding to the situation where
the system is in the dark state !&D!. Moreover, the spectrum
exhibits two resonances centered at ,P!2-$ , whose
widths correspond approximately "when !,!,''.) to .# ,
." , respectively, and can be identified with the dressed

FIG. 1. "a# Level scheme: The solid arrows represent the lasers
at Rabi frequencies '1 , '2, that couple to the transitions !g1!
→!e!, !g2!→!e!, respectively, and are detuned of , from atomic
resonance. "b# Addition of a probe at Rabi frequency 'P and de-
tuning ,P , coupling !g1!→!e!.

FIG. 2. Excitation spectrum I(,P) in arbitrary units as a func-
tion of the probe detuning ,P in units of . . Here, '!. , ,
!2.5. , 'P!0.05. .

GIOVANNA MORIGI PHYSICAL REVIEW A 67, 033402 "2003#

033402-2

Figure 1.23: The diagrams of the ab-

sorbance Im[χ(1)] as a function of nor-

malized detuning of the probe field ∆p

(the definition of ∆p is the same as ∆

in Fig. 1.22) with a positive detuning

of the control field (∆c > 0) [30].
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Chapter 2

Motion Sensing with a Collective

State Atoms

Currently, atom-based motion sensors rely on measuring the first-order Doppler shift

of the atomic transition for single-particles. By using Doppler-sensitive detection

methods, e.g. two-photon Raman transition [1, 2], the Doppler distribution can be

mapped out, and then use the distribution to determine the center-of-mass velocity

of an atomic ensemble. The two-photon Raman transition detects the atomic state

destructively, so for each data point, the cold atoms have to be reloaded, which

takes a long time and increases the concern of the system stability. To improve this

tedious procedure, instead of detecting atoms directly, we would like to measure

the center-of-mass motion of an atomic ensemble by the phase shift measurement of

light passing through the moving medium. This method is an application of light

dragging effect, which offers us an opportunity to acquire the motional behaviour

averaging the whole atomic ensemble with single-shot measurement.

As one of the most influential experiments on the development of modern macro-

scopic theory from Newtonian mechanics to Einstein’s special theory of relativity,

the phenomenon of light dragging in a moving medium has been discussed and ob-

served extensively in different types of systems. To have a significant dragging effect,

the long duration of light travelling in the medium is preferred. In 2012, Davuluri et

al. published their theoretical work [3] about the connection between light dragging

effect and slow light in a hot vapour cell. In our case, we experimentally demon-

strated the light dragging effect with EIT enhancement in cold atoms, all details

had been published (see Reference [4]). Here we demonstrate a light-dragging ex-
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periment in an electromagnetically induced transparent cold atomic ensemble and

enhance the dragging effect by at least three orders of magnitude compared with

the previous experiments. With a large enhancement of the dragging effect, we

realise an atom-based velocimeter that has a sensitivity two orders of magnitude

higher than the velocity width of the atomic medium used. Such a demonstration

could pave the way for motion sensing using the collective state of atoms in a room

temperature vapour cell or solid state material.

2.1 Light Dragging Effect and EIT Enhancement

The light dragging effect was discovered by H. Fizeau in 1851 before the Einstein’s

special theory of relativity [5, 6]. Figure 2.1 shows a schematic of Fizeau’s water

flowing experiment [7]. Light was separated into two beams and passed the flowing

water tube in a counter-propagating direction. The phase shift of the interferom-

eter formed by the counter-propagating light after passing through the water was

observed. However, because the optical paths of these two beams are identical, the

observed phase shift cannot be well-explained at that time.

Figure 2.1: The setup of Fizeau’s water flowing experiment in 1851 [7].

After a few decades, H. A. Lorentz took advantage of Einstein’s special relativity

and introduced a dragging coefficient Fd to describe changes of the phase velocity

vp of the light in the moving medium with the velocity v and the refractive index n

[8] shown in Eqs. 2.1 and 2.2:
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vp = c+ Fdv (2.1)

Fd = 1− 1

n2
+

ω

n

∂n(ω)

∂ω
, (2.2)

where ω is the angular frequency of the light. Equation 2.2 shows the reason why

the dragging coefficient Fd is usually very small because the refractive indexes n of

most matters are close to 1, and the dispersions ∂n(ω)/∂ω are insignificant.

Light dragging effect is difficult to be detected due to the small Fd in most

cases. From Eq. 2.2, an obvious method to increase Fd is to engineer a high

dispersion within a spectral range of the probe field. Unfortunately, under most of

the conditions, the frequency range with the highest dispersion happens when the

absorption is largest. To overcome the difficulty mentioned above and enhance the

sensitivity of the measurement based on the light dragging effect simultaneously,

EIT scheme was implemented in our system. As mentioned in Section 1.2, EIT

can artificially open up a transparent window for the probe field and create a high-

dispersion region as shown in Fig. 1.18. The spectral width of EIT is fully tunable

by the intensity of the control field, which means Fd can be controlled to fit the

experimental requirement.

To calculate the phase shift of light in the dragging effect, we considered the group

velocity of a wave-packet and used Taylor’s expansion to obtain the mathematical

form of the group velocity vg as Eq. 2.4 shows (ignore group velocity dispersion

and higher order terms). The relation between the velocity v of the moving medium

and the phase shift ∆ϕ through a medium of length L can, therefore, be derived as

shown in Eq. 2.6 (assume n ≈ 1):

Fd ≈ ω(
∂n

∂ω
) (2.3)

vg =
c

n+ ω(∂n(ω)∂ω )
≈ c

ω(∂n(ω)∂ω )
(2.4)

vp = c(1 +
v

vg
) (2.5)

ϕ = kL =
ω

vp
L ≈ ωL

c
(1− v

vg
) ⇒ ∆ϕ = −ω

c
tgv = −kL

c
Fdv. (2.6)

In Eq. 2.6, tg = L/vg is the group delay of the light passing the medium.

Because of the benefit of EIT scheme, tg can be a few µs long in our experiment,
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which increases dramatically, compared with other normal media. The velocity v of

the moving medium (it is the cold atomic ensemble in our experiment) can then be

obtained given that ω and c are both known quantities.

2.2 Experimental Setup

Motion sensing using the light dragging effect is the first experimental project demon-

strated in our optical system. In this section, the atomic configuration, the optical

setup and the experimental timing sequence for the motion sensing project will be

introduced. The atomic transitions of the preprocessing laser cooling step are also

included, whose optical setup and timing sequence are discussed in Section 1.1.4.

2.2.1 Atomic Configuration

In this experiment, 85Rb atom was chosen as the EIT medium, because there are

several advantages. First of all, the dipole transition wavelength of 85Rb is visible /

near infrared (IR) light, which provides us more choices of laser sources; Secondly,

the splittings of energy levels in 85Rb hyperfine structure are easy to set up for the

lasers in our equipments. Finally, the atomic mass M of 85Rb is relatively heavier

than most of popular atoms like H, Li, Na and so on. Heavier atoms have slower

recoil velocity (vrecoil = !k/M) and slower thermal velocity (vthermal =
√

3kBT/M),

which could be more efficient in the cooling processes.

There were many laser fields with different frequencies in this experiment, as

shown in Fig. 2.2. They can be classified into three parts by the different usages:

1. The cooling field: |F = 3⟩ → |F ′ = 4⟩ (15 MHz red-detuned and circularly

polarized). The cooling field was used to decelerate the moving hot atoms by adding

momentum kicks in the opposite direction. To maximize the scattering efficiency

and avoid heating effects caused by this cooling field, its frequency needs to be

red-detuned due to Doppler effect (see Section 1.1.1). Additionally, it is better to

choose a cyclic transition as the cooling field, because the absorbed electrons could

relax back to their initial states only, which makes the cooling process able to run

continuously. Also, the scattering rate should be as high as possible. The circularly

polarized field is able to pump the population to the spin-polarized states, which

fits the bill.
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Probe	

D2	 D1	

Push	

Figure 2.2: 85Rb hyperfine structure and the relative transitions used in the ex-

periment. The red arrow is the cooling field with 20 MHz red-detuned from D2

|F = 3⟩ → |F ′ = 4⟩ transition. The two magenta arrows (D2 |F = 2⟩ → |F ′ = 3⟩
and D1 |F = 3⟩ → |F ′ = 2⟩) are the push fields to accelerate atoms by the

momentum kicks. The purple (D2 |F = 2⟩ → |F ′ = 3⟩ )and skyblue (D2

|F = 3⟩ → |F ′ = 3⟩) arrows are the probe and control field, respectively, for

phase shift measurements.
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2. The push field: there were two push fields (D2 |F = 2⟩ → |F ′ = 3⟩ and D1

|F = 3⟩ → |F ′ = 2⟩), both of which were versatile in this experiment. The function

of the push fields is to provide the momentum kicks by the resonant scattering to

push the atomic cloud upward or downward and control its average velocity. In

addition, both of these two push fields were separated into two parts, one was (a)

in Fig. 2.3, which was a directional laser field for the pushing task; the other was

(b) in Fig. 2.3, which co-propagated with the cooling field for the repump of the

cooling process (D2 push field) and the fluorescence imaging process (D1 and D2

push field), as shown in the right-hand side of Fig. 2.3. D2 push field was also used

as a repump field for the cooling process, to prevent some part of the population from

transferring to |F = 2⟩ due to the off-resonant transition |F = 3⟩ → |F ′ = 3⟩ caused
by the red-detuned cooling field. D1 and D2 push fields were also the excitation

fields for the fluorescence imaging of the atomic ensemble. We used a CCD camera

to measure the shape and position of the atomic ensemble from the fluorescence of

atoms by absorbing D1 and D2 push fields.

Figure 2.3: D1 and D2 push fields are separated into two parts and then coupled

into different optical fibres: (a) a directional laser field to provide momentum kicks

for the pushing task; (b) a sixfold laser field, which co-propagates with the cooling

field, working as the repump field of the cooling process or the excitation field for

the fluorescence imaging of the atomic ensemble.

3. The probe field D2 |F = 2⟩ → |F ′ = 3⟩ and the control field D2 |F = 3⟩ →
|F ′ = 3⟩ were used for EIT scheme (see Fig. 1.17), and their frequencies could be

turned by an acoustic-optical modulator (AOM) and an electric-optical modulator
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(EOM) for different single-photon detuning ∆ and two-photon detuning δ (see Fig.

1.17).

2.2.2 Optical Setup

The main optical setup is shown in Fig. 2.4. For the push fields, we coupled

both push fields together and set a stable magnetic indexing mount (NX1N - 16-

Position Indexing Mount from ThorLabs, Inc.) to direct the optical path upward or

downward. In addition, the velocity of the atomic ensemble is tuned by the intensity

of the push fields.

Probe	

Control	

Push	(downward)	

Push	(upward)	

Magne6c	
indexing	mount	

BS	

PBS	

AOM	
Fabry-Parot	

etalon	

Cold	
atoms	

PBS	

Detector	2	

Detector	1	

ωP+70	MHz	

ωP	

g	

Op6cal	fiber	

Figure 2.4: The primary optical setup in the motion sensing experiment.

In order to gain the sensitivity, we aligned the probe field and the control field

in the counter-propagating direction (!183 between two light beams), as the phase

shift ∆ϕ of the light dragging was proportional to the effective wavevector ks (ks =

kp − kc ≈ 2kp) atoms experience [9]. The power of the probe field was set about

1 µW, much weaker than that of the control fields, which are about 600 µW and

2000 µW. The two beams were overlapped on the atomic cloud of about 1.4 mm in

length in the optical fields’ direction. The control beam was collimated with a waist

of about 4 mm and the probe beam was slightly focusing at the center of the atomic

cloud with a waist of about 0.5 mm (shown in Fig. 2.5). The intensity ratio of the
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control and probe fields is about 10 : 1.

Figure 2.5: The size comparison of the control field, the probe field, and the atomic

cloud.

The control field was generated from a diode laser, and part of the power was sent

through an electro-optical modulator (EOM). The first sideband after the modulator

passed through a solid Fabry-Pérot cavity followed by a 70 MHz acoustic-optical

modulator (AOM). The field coming out of lower first order served as the probe

field, and the zero order served as an auxiliary field which then combined with the

probe field by a non-polarising beam splitter to form a 70 MHz beating signal. This

70 MHz signal was further split: part of the beam was sent through the atomic

ensemble for the light-dragging experiment, and the other half served as a local

oscillator for phase comparison as shown in Fig. 2.4. Since the auxiliary field was

70 MHz detuned from the probe field, it did not experience the large light-dragging

effect as the probe field, therefore, the phase shift of the 70MHz signal resulted from

the phase velocity dragging of the probe field only.

The detectors are APD with 1 µW saturation power (APD120A/M - Si Avalanche

Photodetector, 400 - 1000 nm from ThorLabs, Inc.), and the calculation method of

phase differences is introduced in Section 4.3.2. Moreover, the phase noise from

the vibration of optical elements is able to be greatly reduced, because the sub-

millimetre fluctuation of the optical path is negligible compared to the wavelength

of 70 MHz beating signal.

The solid Fabry-Pérot cavity is based on the interference concept as the frequency

filtering mechanism. For our central wavelength of the light field of 780 nm and

the thickness of the etalon of 7 mm, the free spectral range (FSR) is about 14

GHz. Transmission linewidth is 0.6 GHz, the extinction ratio is about 23.6 and
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the finesse (F ) is about 23. However, the etalon is sensitive to the perturbation

from surroundings, such as temperature, which will cause a shift of the resonance

condition. We mounted the cavity with a thermoelectric cooler (TEC) to stabilise

the temperature.

For pulsing the probe field, the radio frequency fed into the AOM was amplitude-

modulated by a Guassian pulse with FWHM of 5 µs from an arbitrary function

generator. EOM (Phase Modulator from EOspace, Inc.) was used to fine-tune the

frequency of the probe field and scan the EIT spectra.

2.2.3 Timing Sequence

The timing sequence for the experiment is shown in Fig. 2.6. Initially, we cooled

the atoms close to 40 µK in a magnetic-optical trap. The upward or downward

push fields with 0.7 ms duration were then sent to the atoms after 5 ms. The EIT

pulses were applied to the atoms after the pushing process. The control field was

introduced 0.5 ms earlier for optical pumping to prepare all the population in the

ground state |F = 2⟩.

Figure 2.6: The time sequences of the motion sensing experiment.

The velocity of the atomic ensemble was calculated by measuring the positions

of the atomic ensemble on a CCD camera at two different timing t1 and t2 separated

by 2 ms (see Eq. 2.7). The CCD camera received the fluorescence from the atoms

excited by the push fields. We also measured the temperature of atomic ensemble
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using time-of-flight (TOF) method by comparing the widths of the atomic cloud at

two different flight time (t1 and t2, they are 1 ms and 3 ms in our experiment) to

calculate the temperature (see Eq. 2.8).

vaverage =
position(t2)− position(t1)

t2 − t1
(2.7)

Tx,y,z =
M

kB

width(t2)2 − width(t1)2

t22 − t21
. (2.8)

In Eq. 2.8, Tx,y,z is the temperature of one of x, y and z axes; M is the mass

of single 85Rb atom; kB is Boltzmann constant (≈ 1.38 × 10−23m2s−2kgK−1). The

method of temperature measurement and calculation are based on the application

of Ballistic expansion of thermal atoms, as discussed in References [10, 11].

2.3 Data and Discussion

2.3.1 EIT Spectra

Figure 2.7 shows the transmission T of the probe pulse as a function of the probe

field detuning while the control field detuning is fixed (equal to two photon detuning

δ). The results fit the theoretical model of Eqs. 2.9 and 2.10 [12]
(
In Eq 2.9, k0 is

the wavevector of the probe field in the vacuum; n is the number density of atoms;

σabs is the cross-section of one atom in ensemble average; ρ31 is the density matrix

element between the ground state and the excited state (|1⟩ and |3⟩), the same as

the definition in Eq. 1.35; Γ (Γ31) is the spontaneous decay rate; Ωp is the Rabi

frequency of the probe field; OD is the optical depth
)
, which integrate the effects

from all hyperfine levels of 52P3/2. Referring to the parameters of the first order

electric susceptibility Im[χ1] in Eq. 1.35), the obtained result was OD 36.0(4), the

control field Rabi frequency Ωc was 0.582(5)Γ, and the ground state coherence Υ21

was 0.0031(1)Γ (Γ is about 6 MHz), so the high coherence between ground states

(|1⟩ and |2⟩) was achieved.
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T = exp(−1

2
k0L · Im[χ(1)]) = exp(−1

2
nσabsL)

= exp(−1

2
n
3λ2

2π
Im[

ρ31Γ

Ωp
] · L)

= exp(−OD · Γ

2
· Im[

ρ31
Ωp

]) (2.9)

OD =
3λ2

2π
nL. (2.10)

Figure 2.7: The transmission spectrum as a function of the probe field detuning in

the unit of excited state relaxation rate Γ of 85Rb.

In Fig. 2.8, the EIT spectrum is measured with two different control field powers.

Our results fit these data with a Lorentzian function and obtained the peak widths

of 0.306(6)Γ and 0.134(1)Γ for 2 and 0.6 mW of the control field power, respectively.

From Fig. 1.19 and Eq. 2.11 [12], the width of the EIT transmission peak (∆ωtrans)

is directly proportional to the square of the Rabi frequency (proportional to the

intensity) of the control field (Ωc), and inversely proportional to the square root of

OD (under the assumption of the dephasing rate Υ21 ≈ 0, see its definition in Eqs.

1.34 and 1.35). Our experimental results matched the theoretical equations, and

we can see that if we tend to increase the light dragging effect without sacrificing
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the probe intensity, the OD has to be increased to compensate the decrease of the

dispersion (inversely proportional to ∆ωtrans).

∆ωtrans =
Ω2

c

Γ
√
OD

. (2.11)

Figure 2.8: The transmission spectrum as a function of the probe field detuning.

Black squares and blue circles show the spectra with 2 and 0.6 mW of the control

field power, respectively.

2.3.2 Velocity Sensing by Enhanced Light Dragging Effect

In this experiment, we hope to build an optical system to sense infinitesimal velocity

change by measuring and amplifying phase shifts of the signal light passing through

the moving medium. We built a cooling system to produce cold atoms, and then

made the whole atomic ensemble move in either positive or negative z-direction by

momentum kicks from push fields. Also, we measured the phase differences between

the data acquired in Detector 1 and Detector 2 (see Fig. 2.4).

The velocity of the atomic ensemble was controlled by the push field power,

which was correlated to the input power of their AOM switches. The power control

of AOM switches was set in the analogue setting of the experimental time sequence,
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Figure 2.9: The velocity of the atomic ensemble as a function of the push field power

controlled by the AOM amplitude control voltage with different directions.

so the voltage (power) output was consistent and repeatable. In Fig. 2.9, we can see

the velocity of the ensemble was almost linearly increasing with the voltage change of

the push field. There was one point worth noticing: the velocity at the zero voltage

point was a negative value, because the gravity needed to be taken in account. In

addition, one of push fields (D1) connected with a digital setting port, not controlled

by analogue setting, which meant its power cannot be fine-tuned. As a result, the

slope of velocity in push-up and push-down cases did not look symmetric in Fig.

2.9.

In Fig. 2.10, the delay time in the y-axis is proportional to the phase shift ∆ϕ,

where 2π× delay time = phase shift × period of 70 MHz beating (14.28 ns). From

these two spectra, we can find the near-linearity of the relation between the ensemble

velocity and the delay time (phase shift), where the little deviations come from the

fluctuation in the group time delay tg (see Eq. 2.6). The slopes of data line in the

above two cases are very different, which show the trade-off of EIT properties. Based

on Eq. 2.6, the slope is proportional to the dispersion (∂n/∂ω), and the EIT spectral

width is proportional to the power of the control field (see Eq. 2.11), so the slope

becomes smaller when the power of the control field is higher. In our experimental

result, the spectrum with 0.6 mW of the control field power has a larger slope than

that with 2 mW of the control field power, so it performs a better velocity-sensing.

However, if the power of the control field is too low, the probe will be absorbed due
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Our measured phase uncertainty is about 0.01 radians by
taking the mean of three cycles of 70 MHz sinusoidal wave in the
probe field envelope and averaging for 20 experimental
cycles. Each experimental cycle takes 2 s and the duration is
mainly limited by the time of loading the atomic ensemble
and processing the data. Using the value of the
effective wavevector keff¼ 1.61" 107 m# 1 and largest group
delay time t¼ 855(7) ns, our experiment demonstrates a
velocimeter with sensitivity Dv¼Dj/(kefft) at the level of

1 mm s# 1, two orders of magnitude higher than the velocity
width Dva¼ (8kBTln2/m)1/2E176 mm s# 1 of our atomic
ensemble, where kB is the Boltzmann constant, m is the mass
of 85Rb, and T is the effective temperature of the atomic cloud. In
principle, with our 1 mW of probe field, we should be able to
increase the sensitivity by at least two orders of magnitude when
we reach the shot noise limit at 5" 10# 4 radians per square root
Hertz by recording all the cycles within the probe field. The
sensitivity can also be improved by using larger atomic ensemble
and smaller group velocity, that is, 1 cm of an atomic sample can
improve our sensitivity to 100 mm s# 1. Storage of the optical field
in an atomic ensemble has reached a storage time close to a
minute by either confining cold atomic vapour in an optical
potential or placing a rare earth-ion-doped crystal at cryogenic
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Figure 3 | Phase and group delays of the probe field versus velocity of
the atomic ensemble. (a) With control field power of 2 mW. The black
solid squares are the measured phases and the black open squares are
the expected phases (left axis) from equation 4 and group delay
measurements. (b) With control power of 0.6 mW. The blue solid circles
are the measured phases and the blue open circles are the expected
phases (left axis) from equation 4 and group delay measurements.
The red solid triangles are the group delay times (right axis). The phase
delay are measured in terms of the delay time. One cycle corresponds
to 1/70 MHz¼ 14.29 ns. The measured phase uncertainty is by taking the
standard error of three cycles of 70 MHz sinusoidal wave in the probe field
envelope and averaging for 20 experimental cycles. Each experimental
cycle takes 2 s. The group delay of the probe field is measured at each
velocity by fitting the center of the probe field pulse with a Gaussian
function.
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Figure 2 | Transmission of the probe field versus detuning. The probe
field is on 52S1/2, F¼ 2 to 52P3/2, F0¼ 3 transition and the control field is on
52S1/2, F¼ 3 to 52P3/2, F0¼ 3 transition. The probe field detuning is
expressed in terms of excited state spontaneous decay rate G. The standard
error of each data point is calculated from the average of three
experimental trials. (a) Electromagnetically induced transparency spectrum
for optical depth (OD) measurement. The fitting curve shows
OD¼ 36.0(0.4) and control field Rabi frequency Oc¼0.582(5)G. The
duration of the probe field is 100mS and the control field is turned on
100mS before the probe field is on in order to prepare the state of atoms in
the 52S1/2, F¼ 2. The standard error of the central peak is calculated from
five data points while the rest are two data points. (b) Transmission peak of
probe field with 2 mW (black squares) and 0.6 mW (blue circles) control
field power. The fitted Gaussian functions of black squares an blue circles
give 1/e2 width of 0.306(6)G and 0.134(1)G, respectively. The standard
error of each data point is calculated from the average of three
experimental trials.
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Our measured phase uncertainty is about 0.01 radians by
taking the mean of three cycles of 70 MHz sinusoidal wave in the
probe field envelope and averaging for 20 experimental
cycles. Each experimental cycle takes 2 s and the duration is
mainly limited by the time of loading the atomic ensemble
and processing the data. Using the value of the
effective wavevector keff¼ 1.61" 107 m# 1 and largest group
delay time t¼ 855(7) ns, our experiment demonstrates a
velocimeter with sensitivity Dv¼Dj/(kefft) at the level of

1 mm s# 1, two orders of magnitude higher than the velocity
width Dva¼ (8kBTln2/m)1/2E176 mm s# 1 of our atomic
ensemble, where kB is the Boltzmann constant, m is the mass
of 85Rb, and T is the effective temperature of the atomic cloud. In
principle, with our 1 mW of probe field, we should be able to
increase the sensitivity by at least two orders of magnitude when
we reach the shot noise limit at 5" 10# 4 radians per square root
Hertz by recording all the cycles within the probe field. The
sensitivity can also be improved by using larger atomic ensemble
and smaller group velocity, that is, 1 cm of an atomic sample can
improve our sensitivity to 100 mm s# 1. Storage of the optical field
in an atomic ensemble has reached a storage time close to a
minute by either confining cold atomic vapour in an optical
potential or placing a rare earth-ion-doped crystal at cryogenic
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Figure 3 | Phase and group delays of the probe field versus velocity of
the atomic ensemble. (a) With control field power of 2 mW. The black
solid squares are the measured phases and the black open squares are
the expected phases (left axis) from equation 4 and group delay
measurements. (b) With control power of 0.6 mW. The blue solid circles
are the measured phases and the blue open circles are the expected
phases (left axis) from equation 4 and group delay measurements.
The red solid triangles are the group delay times (right axis). The phase
delay are measured in terms of the delay time. One cycle corresponds
to 1/70 MHz¼ 14.29 ns. The measured phase uncertainty is by taking the
standard error of three cycles of 70 MHz sinusoidal wave in the probe field
envelope and averaging for 20 experimental cycles. Each experimental
cycle takes 2 s. The group delay of the probe field is measured at each
velocity by fitting the center of the probe field pulse with a Gaussian
function.
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Figure 2 | Transmission of the probe field versus detuning. The probe
field is on 52S1/2, F¼ 2 to 52P3/2, F0¼ 3 transition and the control field is on
52S1/2, F¼ 3 to 52P3/2, F0¼ 3 transition. The probe field detuning is
expressed in terms of excited state spontaneous decay rate G. The standard
error of each data point is calculated from the average of three
experimental trials. (a) Electromagnetically induced transparency spectrum
for optical depth (OD) measurement. The fitting curve shows
OD¼ 36.0(0.4) and control field Rabi frequency Oc¼0.582(5)G. The
duration of the probe field is 100mS and the control field is turned on
100mS before the probe field is on in order to prepare the state of atoms in
the 52S1/2, F¼ 2. The standard error of the central peak is calculated from
five data points while the rest are two data points. (b) Transmission peak of
probe field with 2 mW (black squares) and 0.6 mW (blue circles) control
field power. The fitted Gaussian functions of black squares an blue circles
give 1/e2 width of 0.306(6)G and 0.134(1)G, respectively. The standard
error of each data point is calculated from the average of three
experimental trials.
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Figure 2.10: The phase delay time as a function of the atomic ensemble velocity.

(a) With control field power of 2 mW. The black solid squares and the black open

squares are the measured phases and the expected phases (left axis), respectively,

which refer to Eq. 2.6 and group delay measurements. (b) With control power of 0.6

mW. The blue solid circles and the blue open circles are the measured phases and

the expected phases (left axis), respectively, which refer to Eq. 2.6 and group delay

measurements. The red solid triangles are the group delay times (right axis). The

phase delay are measured in terms of the delay time. One cycle corresponds to 1/70

MHz = 14.29 ns. The measured phase uncertainty is by taking the standard error

of three cycles of 70 MHz sinusoidal wave in the probe field envelope and averaging

for 20 experimental cycles. Each experimental cycle takes 2 s. The group delay of

the probe field is measured at each velocity by fitting the center of the probe field

pulse with a Gaussian function.
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to decoherence (see the EIT mechanism in Fig. 1.16), and the working range of

the ensemble velocity becomes very small. For example, in our complete data plots

in Fig. 2.11, some data points on the left-hand side had a larger deviation from a

theoretical linear line. This was because those data points were outside of the range

of the EIT width in 0.6 mW case. This deviation was not observed in 2.0 mW case

because it had a larger EIT linewidth.
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Figure 2.11: The phase delay time as a function of the atomic ensemble velocity

in full range of our experiment. The filled squares and the hollow squares are

experimental values and calculated values by Eq. 2.6, respectively. (a) With control

field power of 2.0 mW; (b) With control field power of 0.6 mW.

There are some offsets between the measured delay time and the calculated

ones. We managed to reduce the control field power gradually, and found it would

disappear at some threshold value of the control field power, which meant that

it came from the EIT process. Now we focus on the velocity range near 0 m/s,

and offset to experimental data, the perfect matching between experimental and

theoretical values was obtained as Fig. 2.12 shows.

With the measured atomic cloud size 1.4 mm and our largest group delay time tg

855 ns, the dragging coefficient Fd in our experiment had reached 1.83× 105, which

was two orders of magnitude larger than that with hot 85Rb vapor [13] and five

orders of magnitude larger than the original light dragging effect [5, 6], because of the

benefit from EIT enhancement. For the velocity sensing, our experimental setup can

perform a stable data acquisition and statistical calculations, so the error bars are
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temperature26,27. The sensitivity can be improved by seven orders
of magnitude with successful implementation of the above
methods. To measure the gravity with our velocimeter,
equation 4 can be expressed as j¼ " keffgt2. One second of the
storage time can induce a phase shift of 108 radians, reaching the
level of the current state-of-the-art phase shift of atom
interferometer based inertial sensor28,29.

In conclusion, we have demonstrated the largest Fizeau’s light-
dragging effect using a moving EIT medium and applied it for
velocimetry. Tracing the velocity of a free-falling atomic ensemble at
different timing, one can measure the acceleration as well. Although
the counter-propagating arrangement of the EIT fields in our
experiment can only be implemented with cold atoms due to
Doppler broadening of the ensemble15, this method can be extended
to thermal atoms by using co-propagating arrangement, which is
insensitive to the Doppler broadening of atoms to the first order. Our
demonstration could lead to the study of inertial effect with a
collective state of atoms and designing a new type of motional sensor.

Methods
Derivation of the dragging coefficient. Consider a probe field travelling along a
moving medium of velocity v, the dispersion relation in the rest frame reads

k’¼n o’ð Þo’=c; ð5Þ

where k’ and o’ are the wavenumber and the frequency of the probe field in the rest
frame. Employing the Lorentz transformation to the first order of v/c, o’¼o" kv,
k’¼ k"ov/c2, where k and o are the wavenumber and frequency of the field in the
laboratory frame, we expand the index of refraction n(o’) in equation 5 in a power
series of kv to the first order

k % n oð Þo=c" vk@ n oð Þo=cð Þ=@o þ ov=c2: ð6Þ

Dividing equation 6 by n/(ck), the phase velocity vp' o/k can be written as
vp¼ c/n þ Fdv, where Fd¼ 1" 1/n2 þ (o/n)(@n(o)/@o) is the dragging coefficient.

Experimental details. Our medium is an ensemble of about 109 85Rb atoms after
loading from a magneto-optical trap and the effective temperature is about 40 mK
after sub-Doppler cooling. Due to the imbalance of radiation pressure from the
cooling beams and gravity, the atomic cloud has an initial velocity before the EIT
fields are sent in. Our push field is resonating on the 85Rb D2 line F¼ 2 to F’¼ 3
transition of the ensemble aided by an optical pumping field resonating on F¼ 3 to
F’¼ 2 of D1 line to ensure atoms are returned to the original state. The pulse
duration of the push field is 0.7 ms and the power is adjusted for varying the

velocity. Atoms absorb photons from the push field in a well-defined direction and
re-scatter them in a random direction. On average, atoms will gain a velocity
proportional to the number of the photons being absorbed. The direction of the
push field can be reversed for measurements of velocity at the opposite
direction. The velocity of the atomic cloud after the push field is measured using
the time-of-flight method with a CCD (charge-coupled device) camera.

The probe field has a waist of 300mm positioned around the center of the
atomic ensemble and the waist of the control field is about two times larger than
the probe beam to ensure all the atoms interacting with the probe field are
addressed by the control field with the same intensity. We align the control and the
probe field at nearly counter-propagating direction (about 183 degrees). The
wavevector k in equation 4 can be replaced by the effective wavevector
keff¼ k" kcos183!. The control field is generated from a diode laser and part of the
power is sent through an electro-optical modulator. The first sideband after the
modulator passes through a solid Fabry-Pérot cavity followed by a 70 MHz
acoustic-optical modulator. The field coming out of lower first order serves as the
probe field and the zero order serves as an auxiliary field which then combines with
the probe field by a polarizing beam splitter to form a 70 MHz beating signal. This
70 MHz signal is further split: part of the beam is sent through the atomic ensemble
for the light-dragging experiment and the other half serves as a local oscillator for
phase comparison as shown in Fig. 1b. Since the auxiliary field is 70 MHz detuned
from the probe field, it does not experience the large light-dragging effect as the
probe field and, therefore, the phase shift of the 70 MHz signal results from the
phase velocity dragging of the probe field only.

After 5 ms of turning off the magneto-optical trap, the push field is on followed
by probe and control field. The probe field intensity is about 1 mW and its
amplitude is modulated by a Gaussian function of 9 ms full width at half maximum.
The control field is turned on 300ms before the probe field to ensure atoms are
prepared in the F¼ 2 state.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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(2 mW control field power) are the measured delayed phases and the open
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Figure 2.12: The phase delay times in Fig. 2.10 offset to zero at zero velocity. The

solid circles (0.6 mW control field power) and squares (2 mW control field power)

are the measured delayed phases and the open circles (0.6 mW control field power)

and squares (2 mW control field power) are the expected delayed phases in Eq. 2.6

and group delay measurements.

insignificant on the data plots. In our experiment, we took advantage of heterodyne

setup to reduce the phase uncertainty, which was about 0.01 rad averaging for 20

experimental data points in a 2 s acquisition cycle. The uncertainty of the ensemble

velocity ∆v = 0.01/ks/tg = 1 mm/s was vR/6 (vR is the recoil velocity) and two

orders of magnitude smaller than thermal velocity uncertainty (Doppler broadening,

about 100 mm/s) of the atomic ensemble.
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[2] J. Chabé, H. Lignier, P. Szriftgiser, and J. C. Garreau. Improving Raman

Velocimetry of Laser-cooled Cesium Atoms by Spin-polarization. Optics Comm.,

274(1):254–259, February 2007.

47



[3] S. Davuluri and Y. V. Rostovtsev. Controllable Enhanced Dragging of Light in

Ultradispersive Media. Phys. Rev. A, 86:013806, 2012.

[4] P.-C. Kuan, C. Huang, W. S. Chan, S. Kosen, and S.-Y. Lan. Large Fizeau’s

Light-dragging Effect in a Moving Electromagnetically Induced Transparent

Medium. Nature Comm., 7:13030, October 2016.
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Chapter 3

Raman Sideband Cooling

In Chapter 2, an application of EIT on the light dragging effect of a moving medium

in a free space was introduced. After the demonstration in a free space, we tend to

apply this technique to the moving atoms in a driven periodic potential. In partic-

ular, we plan to observe the periodic motion of atoms undergoing Bloch oscillation

in a moving optical lattice. However, to observe the coherent motion of atoms in

a driven optical lattice, atoms need to be loaded into the optical lattice sites and

dragged by that moving lattice. The efficiencies of the loading and dragging process

strongly depend on the temperature of the atomic ensemble. To maximize it, the

atoms need to be cooled down to the recoil temperature of D1 or D2 transitions.

To approach the recoil temperature of atoms for our further experiments, an

advanced cooling technique is necessary. However, many cooling techniques achieve

a lower temperature accompanied with high loss of atoms, such as Raman cooling

(velocity selection) [1–3] and evaporative cooling [4, 5]. Here, we apply Raman

sideband cooling technique in our system, which can both keep a large fraction

of atoms and closely reach the recoil temperature. Raman sideband cooling was

first demonstrated with ions [6]. In neutral atoms, Raman sideband cooling has

been demonstrated with 6Li [7], 39K [8], 87Rb [9–11], and 133Cs [12–16]. Different

experimental arrangements are required for different fine and hyperfine structures of

atomic species. 85Rb atoms get a great interest in atomic physics due to their high

natural abundance in Rb isotopes and opposite sign of scattering length of their

hyperfine ground states [17]. On the other hand, the small energy separation of the

hyperfine states and large collision loss make 85Rb less popular than 87Rb in the

community. In our experiment, we demonstrated the degenerate Raman sideband
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cooling of 85Rb atoms in a 2D lattice, and achieve 60% number of atoms remaining

in our cold atomic ensemble with a cooling temperature 400 nK close to the recoil

temperature 357 nK of 85Rb D1 line transition [18].

3.1 Theory

Raman sideband cooling is one of ground-state cooling techniques, whose mecha-

nism is based on loading atoms into a harmonic potential well, and then transfer

the population of atoms to the vibrational ground state of the harmonic potential

to achieve a lower temperature. The quantized energy levels in the external po-

tential well are the core of the ground-state cooling technique. In our experiment,

they are provided by the optical lattice, whose properties are introduced in Section

3.1.1. With the foundation built from the optical lattice, the detail of the cooling

mechanism is introduced in Section 3.1.2.

3.1.1 Optical Lattice

A key role in Raman sideband cooling is the optical lattice. Simply speaking, an

optical lattice is the potential well produced by the standing wave of coherent laser

fields. Here a 1D lattice / standing wave is used as an example:

Eforward = A · cos(kzz − ωt)

Ebackward = A · cos(kzz + ωt)

Etotal = Eforward + Ebackward = 2A · cos(kzz) cos(ωt), (3.1)

where kz is the wave vector on the propagation direction z-axis; A is the amplitude

of the light field; ω is oscillation frequency. We can see that the electric field Etotal

of the standing wave periodically distributes and oscillates in the free space. Atoms

are trapped within the wavelength size potential through AC Stark shift.

AC Stark effect (shift), or light shift, describes how an atom responds to a light

field (AC electromagnetic filed), which is shown in Fig. 3.1. The same as EIT

effect in Section 1.2, there are two pictures for understanding this behaviour: the

dressed atom picture and the bare atom picture. Figure 3.2 shows the mechanism

of AC Stark effect in the dressed atom picture [19]. Ω is the Rabi frequency of the
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Figure 3.1: Far-detuned light field with detuning ∆ge causes AC Stark effect, which

makes the energy level shifts ∆E based on the magnitude and sign of the detuning.

|g⟩ and |e⟩ represent the ground state and the excited state in a two-level system.

interaction between the incident light and the atom, and the definitions of |g⟩ and
|e⟩ are the same as those in Fig. 3.1; |a(N)⟩ and |b(N)⟩ are similar to those in Eqs.

1.29 and 1.30, with an extra detuning ∆ge as follows:

|a(N)⟩ = sinθ|g,N + 1⟩+ cosθ|e,N⟩ (3.2)

E|a(N)⟩ =
!
2
(∆ge +

√
∆2

ge + Ω2) (3.3)

|b(N)⟩ = cosθ|g,N + 1⟩ − sinθ|e,N⟩ (3.4)

E|b(N)⟩ =
!
2
(∆ge −

√
∆2

ge + Ω2) (3.5)

θ =
1

2
tan−1(− Ω

∆ge
), 0 ≤ θ ≤ π

2
. (3.6)

In the case of the far-detuned light field (|∆ge| ≫ Ω), and ∆ge > 0 as shown in

Fig. 3.2, the configuration and the energy of |a(N)⟩ and |b(N)⟩ are approximated

as:

51



Figure 3.2: The mechanism of AC Stark shift ∆E in dressed atom picture. The

definitions of symbols are discussed in the text.

|a(N)⟩ ≈ |g,N + 1⟩ (3.7)

E|a(N)⟩ ≈ !∆ge +
!Ω2

4|∆ge|
(3.8)

⇒ ∆Eg = E|a(N)⟩ − ∆ge = +
!Ω2

4|∆ge|
(3.9)

|b(N)⟩ ≈ |e,N⟩ (3.10)

E|b(N)⟩ ≈ − !Ω2

4|∆ge|
(3.11)

⇒ ∆Ee = E|b(N)⟩ = − !Ω2

4|∆ge|
. (3.12)

The absolute value ∆Eg,e of the AC Stark shift in Eqs. 3.9 and 3.12 can be

obtained as !Ω2/4|∆ge|, which is directly proportional to the intensity of the incident

light field, and inversely proportional to the detuning of the light field frequency. In

the optical lattice, we tend to trap atoms in a potential well, so a large detuning (a

few GHz usually) is chosen to prevent the loss from unexpected scattering, and this

kind of optical lattice is also called “non-dissipative optical lattice”.

In the bare atom picture, AC Stark effect is treated as the energy shift caused by

the induced dipole moment in classical electromagnetism [20], or the second-order
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time-dependent perturbation theory in quantum mechanics [21, 22]. The induced

dipole moment P (per unit volume) is written as below:

P = α · E+ β : EE+ γ : EEE+ · · · , (3.13)

where E is the electric field which induces the dipole moment P; α is the polariz-

ability; β and γ are the high-order terms, called hyperpolarizability. The hyperpo-

larizability is the key role to induce non-linear optical effects, but it highly depends

on the deviation from the harmonic oscillator model of electron binding potentials

and chemical bonds or charge transfer phenomena in molecules or solids. Through-

out this thesis, the polarizability α is only considered in the analysis. The induced

dipole energy is shown as follows:

∆E = −
∫

υ

P · Edυ = −
∫

υ

E · α · Edυ

≈
∑

e

⟨g|d · E∗|e⟩⟨e|d · E|g⟩
!∆ge

=
!Ω2

4∆ge
. (3.14)

In Eq. 3.14, the Rabi frequency Ω is defined as (2/!)⟨e|d ·E|g⟩, and the derived

∆E is the same as that in dressed atom picture. AC Stark effect corresponds to the

behaviour of two transition dipole moments, ⟨g|d ·E∗|e⟩ and ⟨e|d ·E|g⟩, so the polar-

ization direction of E is very crucial, because Clebsch-Gordan coefficients of atomic

transitions between different Zeeman states are different. In another words, we could

treat the polarizability α as a rank-2 tensor, and the perturbation Hamiltonian Ĥ ′

of AC Stark effect is written as [23]:

Ĥ ′(F ) = c(0)0 (F ) +
1∑

q=−1

c(1)q (F )FF T̂ (1)
q +

2∑

q=−2

c(2)q (F )FF T̂ (2)
q , (3.15)

where ckq(−k ≤ q ≤ k) is the proportional coefficient, which is a function of the

detuning ∆ge, Rabi frequency Ω, total angular momentum quantum number F , and

symmetric condition relying on the polarization of the incident light field; FF T̂ (k)
q is

the irreducible tensor operator, which shows the different behaviours among mag-

netic quantum numbers mF . In Eq. 3.15, the first term is called scaler light shift,

which depends on the intensity of the light field. The second term is called vector

light shift, which is proportional to the magnetic quantum number mF . This term
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offers a fictitious Zeeman effect [24]. The third term is called tensor light shift, which

is a function of the square of magnetic quantum number m2
F [23, 25, 26]. Here, we

choose a large detuning ∆ge (12 GHz) and the light field with relatively low intensity

(around 50 mW per beam with 1 cm2 cross section). From Eq. 3.14, the difference

of AC Stark shifts among different Zeeman states is, therefore, small enough to be

ignored, which means that only scaler light shift would be taken into account in our

experiment.

3.1.1.1 Band Structure

Both of an optical lattice and a dipole trap take advantage of AC Stark effect to

trap atoms, but they are different in many ways, one of which is the band structure.

Taking the general case of 1D optical lattice as an example, the light field E is

defined as those in Eqs. 1.12 - 1.15, with a tilted angle θ of the polarization as

shown in Eq. 3.16:

Figure 3.3: The geometry of two counter-propagating light fields to build an optical

lattice [27].

E(z) =
√
2A{−e−iθ/2 cos(kz + θ/2)ϵ+ + eiθ/2 cos(kz − θ/2)ϵ−}, (3.16)

where A is the amplitude, with the same definition as ε0 or ε′0 in Eq. 1.13. ϵ+ and

ϵ− are the right-handed and left-handed helicity of the light field. With the spatial

distribution of the light field, the potential operator Û(z) of the optical lattice can

be written as follows [27]:
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Û(z) = −E(z) · α̂ · E(z)− µ̂ ·B

= −2U0

3
{2[1 + cosθ cos(2kz)]Î + [sinθ sin(2kz)]σ̂z}−

!
2
γB · σ̂, (3.17)

where U0 is a constant potential without spatial and polarization factor; Î and σ̂ are

the identity and Pauli spin operator, respectively; B is an external magnetic field.

From Eq. 3.17, we can see that the potential of the optical lattice consists of a simple

periodic distribution and two kinds of interactions with magnetic fields, one of which

is an internal magnetic field produced by the curl of the time-variable electric field

(ϵ∗(z)×ϵ(z)), and the other one is externally applied (B). The internal magnetic field

is the source of the vector light shift, which is always along the propagation direction

of the light field and vanishes in the linear polarization case. However, the optical

lattice is also affected by other magnetic fields in any direction, so the Pauli operator

σ̂ in the last term is not specifically projected on z-axis (propagation direction). AC

Stark shift on the Zeeman state is a function of the magnetic quantum number

along with the light propagating direction as the quantization axis, so the external

magnetic field could break the symmetry of the band structure of the optical lattice.

Fortunately, it is not an issue in our experiment because of the large detuning, low

field power and linear polarization of the lattice field.

From Û(z) in Eq. 3.17, the band structure of 1D lattice could be solved. Taking

Cs atoms as an example, Fig. 3.4 shows the potential and the corresponding band

structure [27]. In Fig. 3.4, ER is the recoil energy of the lattice field; Γ is the

spontaneous decay rate of the excited state 6P3/2(F ′ = 5); k and q are the lattice

photon momentum and particle quasi-momentum in the lattice, respectively. The

details of the band structure will be discussed in Chapter 4. In our Raman sideband

cooling experiment, the lattice band is approximated with a simple harmonic oscil-

lator model with energy series Elattice = !ωvib(v + 1/2), where ωvib is the angular

frequency of the vibration in the lattice; v is a non-negative integer, which represents

the quantum number of discrete energy levels of a quantum harmonic oscillator.

Aforementioned discussions are related to the axial trapping of 1D lattice. The

1D dipole trap lacks the axial confinement, so it has no band structure in axial

direction, just be a guiding channel. In fact, both of 1D lattice and dipole trap can

produce radial trapping based on the beam profile, so it should also produce some
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Figure 3.4: 1D lin⊥lin lattice with U0 = 150ER and detuning -2000Γ from 6S1/2(F =

4) to 6P3/2(F ′ = 5) of Cs atoms. Left : the potential energies of different Zeeman

states calculated with Eq. 3.17, as a function of the spatial phase factor kz; Right :

the complete band structures of different Zeeman states in the first Brillouin zone.

Below the crossing points of the energy bands, the bands are in the tight-binding

regime with the energy width less than 0.1ER. Above, there are hybrid bands with

energy crossing points due to stimulated Raman resonance between some Zeeman

states [27].
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band structure in principle. But, the beam size (diameter) of our lattice field is

relatively large (about 0.7 cm), compared with the atomic cloud size (0.14 cm) and

the spatial period of the lattice (390 nm), so the potential in the radial direction

could be treated as a constant in our experiment.

3.1.1.2 Crystallography

The optical lattice is produced by the standing wave of the light field owning some

similar properties as a lattice in a solid, one of which is the band structure, and

another one is the geometric structure in crystallography. Taking a general 3D

lattice as an example, we assume that the periodic interval is a, and the potential

Û shows the spatial periodicity as below:

Figure 3.5: The spatial base vector ai in a lattice.

Û(r) = Û(r+ a) (3.18)

a = n1a1 + n2a2 + n3a3, (3.19)

where ni and ai are integers and base vectors in the unit cell of the lattice, respec-

tively. Considering the orientation of light beams for optical lattice, and dropping

the time-dependent term exp(iωt) in Eq. 1.12 to simplify the model, the correspond-

ing geometry of the lattice can be obtained as follows:

E(r) =
∑

m

εmϵme
ikm·r + c.c. (3.20)

U(r) ∝ I ∝ |E∗E| =
∑

m

ε2m +
∑

m<n

2εmε
∗
n(ϵm · ϵn)cos[(km − kn) · r]. (3.21)
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εm, ϵm and km are the amplitude, the polarization direction and the wave vector

of the mth light field, respectively, with the same definitions as those in Eqs. 1.12-

1.15. r and (km − kn) are the general position vector and the reducible base vector

of the lattice field in k-space, respectively. The set of base vectors in k-space are

also called the translational vectors G of the reciprocal lattice in solid state physics

[28]. Owing to the linear dependency of vectors in the space, we could select some

of them as the base vectors a∗
i in k-space, e.g. select 3 (km − kn) vectors (k1 −

k2,k1 − k3,k1 − k4) as base vectors (a∗
1, a

∗
2, a

∗
3) of a 3D reciprocal lattice. Because

of the orthogonality between base vectors in the direct lattice and reciprocal lattice,

we could derive the set of base vectors ai in direct lattice [29, 30]:

ai · a∗
j = 2πδij (3.22)

a1 = 2π
a∗
2 × a∗

3

a∗
1 · a∗

2 × a∗
3

, a2 = 2π
a∗
3 × a∗

1

a∗
1 · a∗

2 × a∗
3

, a3 = 2π
a∗
1 × a∗

2

a∗
1 · a∗

2 × a∗
3

, (3.23)

where δij is Kronecker delta, equal to 1 for i = j, or 0 for i ̸= j. Equation 3.23 shows

the calculation of ai of a general 3D lattice. Taking a 4-beam tetrahedral geometry

of light fields to produce a 3D lattice as an example, Fig. 3.6 shows the light beam

orientation and the unit cell of the corresponding real-space lattice [30].

3.1.2 Cooling Mechanism

As mentioned in Section 1.1.3 and the beginning of this chapter, sub-Doppler cool-

ing technique is although straightforward to operate, it is hard to reach the recoil

temperature. To solve this issue, a new technique to provide a confinement to

atoms, which more efficient than the dissipative lattice of sub-Doppler cooling, was

developed, which is also called the ground-state cooling technique.

The mechanism of the ground-state cooling is to build an artificial trap to limit

the motion of atoms, which quantizes the energy of atoms in the trap, and then

stepwise transfer the atomic population to the ground state of the trap by the

elaborated, specific momentum kicks for the reduction of the kinetic energy of atoms,

and finally achieve a lower temperature. The so-called artificial trap could be any

potential well, one of which is the optical lattice. Raman sideband cooling and EIT

cooling (mentioned in Section 1.2.4) are both members of the ground-state cooling
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Figure 3.6: The light wave vector km orientation and the unit cell of the correspond-

ing lattice. ex,y,z are unit vectors of the spatial axes; θ is the angle between z axis

and other three light beams, which affects the final geometry of the lattice; white

and black balls indicate two types of lattice sites with different helicities of the light

fields [30].

family. In our system, the one we implement is Raman sideband cooling, which

consists of four components: optical lattice, magnetic field, two-photon Raman field,

and optical pumping field.

In Raman sideband cooling, the potential produced by the optical lattice is

approximated as a harmonic oscillator model, so the total external energy Elattice of

an atom in the lattice is !ωvib(v+1/2), as mentioned in Section 3.1.1.1. Taking a 1D

lattice along z-axis as an example in Eqs. 3.24 - 3.26, η is Lamb Dicke parameter. kz

is the wave vector of light field along z-axis. z0 is the vibration width in the ground

state (v = 0) of the harmonic oscillator model. η2 shows the ratio of the recoil

frequency ωR to the vibrational level spacing ωvib. The (2v + 1) term represents

the increase of the vibration width of higher motional states. Lamb Dicke regime

requires that the light field makes a small enough phase difference (kzz) within

the interaction length (z = z0
√
2v + 1) to suppress high-order transitions among

motional states [31].

59



η = kzz0 (3.24)

η2 = (

√
2mωR

!

√
!

2mωvib
)2 =

ωR

ωvib
(3.25)

η2(2v + 1) ≪ 1, (3.26)

Other than defining the quantisation axis for atom-light interaction, an external

magnetic field is not necessary for Raman sideband cooling. However, in order to

simplify the optical setup, the degenerate Raman sideband cooling was developed to

share the light field of the optical lattice and two-photon Raman transition by a spe-

cific Zeeman splitting. In Fig. 3.7, a two-photon Raman transition is implemented

to transfer the population into different vibrational levels by two degenerate Raman

fields. To make this situation happen, the Zeeman splitting needs to be tuned to

match the vibrational level spacing [12].
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Raman sideband cooling only along a single tightly bound
Lamb-Dicke direction.
Our cooling method is similar to that used in Ref. [10].

We begin with a spin-polarized atom in the state jF ≠
3, mF ≠ 3; nl, where n . 0 denotes an excited vibra-
tional state in the Lamb-Dicke direction (Fig. 1). An
external magnetic field B is applied to shift this level
into degeneracy with j3, 2; n 2 1l; since the vibration
frequencies of the m ≠ 3 and m ≠ 2 potentials are ap-
proximately the same, this condition holds for all n in the
harmonic region of the trap [13]. A cooling cycle then
consists of a degenerate Raman transition from j3, 3; nl to
j3, 2; n 2 1l, followed by optical pumping back to j3, 3l.
Since the atom is tightly bound, the recoil momentum
from the scattered photon is unlikely to change its vi-
brational state, and the atom is preferentially returned to
j3, 3; n 2 1l, with one quantum of vibration energy re-
moved. After subsequent cooling cycles j3, 3; n 2 1l to
j3, 2; n 2 2l, etc., the atom reaches the vibrational ground
state which is dark to both the optical pumping and degen-
erate Raman transitions.
Since the Raman transitions use two isoenergetic pho-

tons, they can be driven by the trapping light itself,
whose large intensity and detuning allow a sizable cou-
pling in combination with low heating by spontaneous
Raman processes. The coupling strength is given by
the off-diagonal matrix element of the light shift opera-
tor [13], k3, 2; y 2 1jUsrdj3, 3; yl, which for general po-
larization is nonzero only when the external magnetic
field B is oriented at a nonzero angle b relative to
the wave vector k. Different center-of-mass wave func-
tions are coupled by the two-photon recoil associated
with the spatial dependence of U, whose parity with re-
spect to the Lamb-Dicke potential wells is determined by
the polarization configuration of the standing wave. To
drive transitions with Dn ≠ 21, we use two counter-
propagating running waves whose linear polarizations

FIG. 1. Degenerate Raman sideband cooling in a Lamb-
Dicke trap using the two lowest-energy magnetic levels. One
cooling cycle consists of a vibration-changing Raman transition
followed by optical pumping back to the mF ≠ 3 sublevel. The
atoms accumulate in the vibrational ground state of the mF ≠ 3
level (black dots) which is dark to both the optical pumping
light and the Raman transitions.

subtend an angle a [14]. The coupling strength for this
configuration is approximately k3, 2; n 2 1jUj3, 3; nl ≠
n1y2s61y2y2d´U0h sin a sin b, to leading order in the
Lamb-Dicke parameter h ≠ kx0 [15]. Here U0 is the trap
depth for linearly polarized light, ´ ≠ 2.34 3 1022 char-
acterizes the relative strength of the Raman transitions for
our detuning, and x0 is the rms width of the ground state
in position space. Note that both the radial and axial vi-
bration frequencies are also functions of the angle a.
Our 1D lattice trap is produced by the TEM00 out-

put of an optically injection-locked Nd:YAG laser system
which we constructed. It produces a single frequency out-
put power of 21 W at l ≠ 1064 nm that is used to form
a vertical standing wave with a beam waist of 260 mm
and a running wave power of 17 W at the position of
the atomic cloud. For a linearly polarized standing wave
the calculated trap depth [16] is U0yh ≠ 3.2 MHz or
160 mK, while the calculated axial and radial vibration
frequencies are fax ≠ 130 kHz and fr ≠ 120 Hz, respec-
tively. The estimated scattering rate induced by the trap-
ping light is 2 s21.
We begin with a magneto-optical trap (MOT) that is

loaded from a background cesium vapor with a time
constant of 4.5 s. We collect 3 3 107 atoms in 500 ms
in the MOT and then decrease the total repumping light
intensity to 3.2 mWycm2 for 38 ms to compress the
cloud. Subsequently, blue detuned Sisyphus cooling [16]
is performed in the trap for 5 ms on the 6S1y2, Fg ≠ 3
to 6P3y2, Fe ≠ 2 transition with a detuning of 2p 3
18 MHz. The MOT laser here serves as a repumper
from the Fg ≠ 4 ground state on the 6S1y2, Fg ≠ 4 to
6P3y2, Fe ≠ 4 transition. In the 1D lattice we trap a
total of 1.0 3 107 atoms in a cigar-shaped cloud with
a vertical FWHM of 2.5 mm. This length corresponds
to 4700 individual pancake shaped traps each with an
aspect ratio of 1000, spaced by 532 nm. The vertical
density distribution is approximately Gaussian, yielding
a population of 2.0 3 103 atoms per trap in the central
region.
The lifetime of the trapped gas depends strongly on

the hyperfine level. For atoms prepared in the lower
hyperfine level F ≠ 3 the decay is purely exponential
with a background-pressure limited time constant of
t ≠ 2.0 s. For the upper hyperfine level we observe a
much faster density-dependent loss due inelastic two-body
collisions. Figure 2 shows the decay for an unpolarized
sample prepared by optical pumping at t0 ≠ 400 ms in
the upper hyperfine state F ≠ 4 at T ≠ 14 mK and n ≠
1.1 3 1012 cm23. The data are well described by a two-
body loss process with a rate coefficient in agreement
with a previously published value [17]. For atoms in the
lower hyperfine level at zero magnetic field there are no
exothermic two-body collisions.
We measure the axial and radial kinetic energy distribu-

tions of the trapped atoms using a time-of-flight method.
The atoms are dropped by extinguishing the trapping light
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Figure 3.7: The cooling cycle of the degenerate Raman sideband cooling for Cs

|F = 3⟩ state [12].

The functionality of Raman field is to transfer the population into other mo-

tional states of different vibrational quantum numbers (v ↔ v ± 1) by providing

!a∗
i momentum kick (see Eq. 3.23). However, two-photon Raman field could also

transfer the population to higher vibrational level as a heating process (v → v + 1).

Optical pumping field is then used to pump atoms on the lower vibrational level into

another Zeeman state while preserving the same vibrational level. Finally, to end

up the cooling process, the population of atoms fall into a dark state without the

pumping effect of two-photon Raman field and optical pumping field by choosing a
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proper polarization of the optical pumping field. As the example in Fig. 3.7, the

polarization of optical pumping field should be σ+ + π.

3.2 Experimental Setup

3.2.1 Configuration

The atomic transitions used in our experiment are shown in Fig. 3.8. The configu-

rations of Doppler cooling and sub-Doppler cooling are already discussed in Section

2.2.1. Only the key roles of Raman sideband cooling fields are described as follows:

1. The optical lattice field: it was produced by a taper-amplifier seeded by a diode

laser locked at 12 GHz red-detuned D2 transition. Each lattice beam is about 47

mW and 7 mm beam waist. The diode laser was injection-locked by the cooling laser,

and its frequency was tuned by a phase-modulated EOM (electro-optical modulator)

at 12 GHz. The -1 order sideband of the EOM was filtered through a temperature-

controlled Fabry-Pérot etalon to injection-lock the diode laser.

2. The circularly-polarized optical pumping field: 20 MHz blue-detuned D1 |F =

3⟩ → |F ′ = 2⟩ transition. This D1 transition and polarization were chosen to pump

atoms into the spin-polarized state, which is a dark state in D1 |F = 3⟩ → |F ′ = 2⟩
transition. 20 MHz blue-detuning was set to reduce the single-photon scattering rate

and the Raman coupling between the dark state and its neighbourhood vibrational

states, which are discussed in Section 3.3.1. The larger hyperfine splitting of the

excited state (360 MHz, much larger than that of D2 line) could avoid unexpected off-

resonant transitions. As shown in Fig. 3.9, σ+ and a little fraction of π polarization

are both required in the cooling process, so we tilted a small angle (10 ) of the beam

orientation to produce π polarization light, as shown in Fig. 3.10.

3. 2-state repump field: even with a small probability, atoms which interact with

the optical pumping field can be pumped to the |F = 2⟩ state and leave the cooling

process. We prepared a 2-state repump field with the resonant MOT repump field

to pump atoms back to the |F = 3⟩ state to continue the cooling process.
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Figure 3.8: The atomic transitions for degenerate Raman sideband cooling. The

magenta arrow is the optical pumping field with 20 MHz (∆1) blue-detuned from

D1 |F = 3⟩ → |F ′ = 2⟩ transition. The purple arrow is 2-state repump field with

D2 |F = 2⟩ → |F ′ = 3⟩ transition. The skyblue arrow is the lattice field with 12

GHz (∆2) red-detuned from D2 transition.
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FIG. 1. Two-step degenerate Raman sideband cooling energy
scheme. The figure only shows the most relevant energy levels.
The blue double arrows indicate the degenerate two-photon Raman
transition for the interchange of vibrational energy and Zeeman
energy. The dashed arrow indicates the relevant spontaneous emission
in the cooling process. Due to the small separation between the
excited hyperfine states of the D2 line manifold, we employ a D1

line for optical pumping to avoid coupling to other excited states. The
σ+-polarized optical pumping beam (thick red arrow) represents the
fast cooling to the |F = 3,mF = 2,n = 0⟩ state, and the π -polarized
optical pumping beam (thin red arrow) represents the slow cooling to
the |F = 3,mF = 3,n = 0⟩ state. Both frequencies are detuned by #

from the excited state. The light shift and power broadening from the
optical pumping beam and the lattice beams are omitted in the figure.

shown in Fig. 2. The lattice beams are generated from a
tampered amplifier seeded by an extended cavity diode laser.
The diode laser is injection locked by the magneto-optical trap
(MOT) cooling beam which is modulated by an electro-optic

FIG. 2. Optical arrangement for the experiment. The thick blue
arrows on the horizontal x-y plane are the lattice beams, and the
red arrow from the top is the optical pumping beam. The imaging
beams are from the cooling and repumping beams of the MOT and
the fluorescence images are collected from the CCD camera. NPBS
is a nonpolarizing beam splitter for separating the optical pumping
beam and fluorescence.

modulator at 12 GHz. The negative first-order sideband of
the MOT beam after the electro-optic modulator is filtered
by a temperature-stabilized solid étalon and injected into the
diode laser. An external magnetic field is pointing along the
normal vector of the lattice plane to define the quantization
axis for atom-light interactions. The optical lattice beams are
linearly polarized and the polarization is tilted by about 20◦

with respect to the quantization axis to provide a nonzero
transition amplitude of the two-photon Raman transition.
When the tilting angle is small, we can approximate the lattice
potential as

U = − 4
3
u

[
3
2

+ cos(
√

3ky) + cos

(√
3ky − 3kx

2

)

+ cos

(√
3ky + 3kx

2

)]

, (1)

where u is the single beam potential, k is the wave vector of the
light, and x and y are spatial coordinates [27]. By considering
a large trap depth compared to the recoil energy, the potential
can be approximated further as a harmonic potential around
x = 0 and y = 0 as

U ≈ − u[− 6 + 3k2(x2 + y2)], (2)

with oscillation frequency ω =
√

6uk2

m
, where m is the mass

of the particle. The temperature T0 of the ground state of the
harmonic potential can be inferred from kBT0 = h̄ω/2, where
kB is the Boltzmann constant. Our lattice beams have a waist
of 7 mm and 47 mW on each beam, and the frequency is
red detuned 12 GHz from the 85Rb D2 line F = 3 to F ′ = 4.
The calculated vibrational frequency ω/2π = 21 kHz, which
corresponds to a temperature T0 = 440 nK.

Atoms are first loaded from the background Rb vapor into
a three-dimensional MOT for about 900 ms in a commercial
ultrahigh vacuum chamber (miniMOT from ColdQuanta, Inc.).
The MOT coils are then switched off to perform sub-Doppler
cooling for 30 ms. Through a time-of-flight measurement,
the temperature of the atomic ensemble at this stage is about
10 µK. We conduct a microwave spectroscopy on the Zeeman
sublevels and minimize the energy splitting between Zeeman
states by applying external magnetic fields from three pairs
of Helmholtz coils. The ambient magnetic field is reduced
to about less than 10 kHz on the adjacent Zeeman sublevels.
To avoid heating, we adiabatically ramp up the power of the
lattice beams in 800 µs to load atoms into the optical lattice.
Meanwhile, a tens of mG of magnetic field for defining the
quantization axis and to split the Zeeman degeneracy is turned
on before switching on the lattice beams.

The optical pumping beam with a beam waist of 7 mm and
total power of 1 mW is generated from another extended cavity
diode laser at 795 nm and propagating along the direction 10◦

from the quantization axis. The polarization of the optical
pumping beam is circular and the offset angle from the z
axis gives a ratio of 5%–10% on the π -polarized component
and σ+-polarized component. The frequency of the optical
pumping beam is detuned by # from the D1 line F = 3 to
F ′ = 2 transition. Even with a small probability, atoms are
pumped to the F = 2 state and leave the cooling process. We
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Figure 3.9: Degenerate Raman sideband cooling scheme in this experiment. The

cyan lines are degenerate Raman fields; the magenta lines are optical pumping fields,

where their thickness qualitatively represent the power difference between σ+ and π

polarized fields; ∆ is the detuning of the optical pumping field.

3.2.2 Optical Setup

Figure 3.10 shows the alignment of our experimental setup for Raman sideband

cooling. The three cyan lines are the light fields of the optical lattice and two-

photon Raman transitions, which refer to the design in Reference [32]. Our optical

lattice is a 2D lattice on xy plane, where the spatial function of its potential U is

shown in Eq. 3.27, based on the analysis in Section 3.1.1.2.

U = −4

3
u[
3

2
+ cos(

√
3ky) + cos(

√
3ky − 3kx

2
) + cos(

√
3ky + 3kx

2
)], (3.27)

where u is the potential energy made by a single light beam, k is the wavevector of the

lattice field. To illustrate the geometric structure, the contour plot is used to show

the potential distribution as in Fig. 3.11 (set u and k are both 1 for simulation). Near

the center of the potential dip (e.g. x=0 and y=0), Eq. 3.27 could be approximated

with Eq. 3.28. The harmonic oscillator model and its energy level series will then

be used in the further discussion.

U ≈ u[−6 + 3k2(x2 + y2)]. (3.28)
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FIG. 1. Two-step degenerate Raman sideband cooling energy
scheme. The figure only shows the most relevant energy levels.
The blue double arrows indicate the degenerate two-photon Raman
transition for the interchange of vibrational energy and Zeeman
energy. The dashed arrow indicates the relevant spontaneous emission
in the cooling process. Due to the small separation between the
excited hyperfine states of the D2 line manifold, we employ a D1

line for optical pumping to avoid coupling to other excited states. The
σ+-polarized optical pumping beam (thick red arrow) represents the
fast cooling to the |F = 3,mF = 2,n = 0⟩ state, and the π -polarized
optical pumping beam (thin red arrow) represents the slow cooling to
the |F = 3,mF = 3,n = 0⟩ state. Both frequencies are detuned by #

from the excited state. The light shift and power broadening from the
optical pumping beam and the lattice beams are omitted in the figure.

shown in Fig. 2. The lattice beams are generated from a
tampered amplifier seeded by an extended cavity diode laser.
The diode laser is injection locked by the magneto-optical trap
(MOT) cooling beam which is modulated by an electro-optic

FIG. 2. Optical arrangement for the experiment. The thick blue
arrows on the horizontal x-y plane are the lattice beams, and the
red arrow from the top is the optical pumping beam. The imaging
beams are from the cooling and repumping beams of the MOT and
the fluorescence images are collected from the CCD camera. NPBS
is a nonpolarizing beam splitter for separating the optical pumping
beam and fluorescence.

modulator at 12 GHz. The negative first-order sideband of
the MOT beam after the electro-optic modulator is filtered
by a temperature-stabilized solid étalon and injected into the
diode laser. An external magnetic field is pointing along the
normal vector of the lattice plane to define the quantization
axis for atom-light interactions. The optical lattice beams are
linearly polarized and the polarization is tilted by about 20◦

with respect to the quantization axis to provide a nonzero
transition amplitude of the two-photon Raman transition.
When the tilting angle is small, we can approximate the lattice
potential as

U = − 4
3
u

[
3
2

+ cos(
√

3ky) + cos

(√
3ky − 3kx

2

)

+ cos

(√
3ky + 3kx

2

)]

, (1)

where u is the single beam potential, k is the wave vector of the
light, and x and y are spatial coordinates [27]. By considering
a large trap depth compared to the recoil energy, the potential
can be approximated further as a harmonic potential around
x = 0 and y = 0 as

U ≈ − u[− 6 + 3k2(x2 + y2)], (2)

with oscillation frequency ω =
√

6uk2

m
, where m is the mass

of the particle. The temperature T0 of the ground state of the
harmonic potential can be inferred from kBT0 = h̄ω/2, where
kB is the Boltzmann constant. Our lattice beams have a waist
of 7 mm and 47 mW on each beam, and the frequency is
red detuned 12 GHz from the 85Rb D2 line F = 3 to F ′ = 4.
The calculated vibrational frequency ω/2π = 21 kHz, which
corresponds to a temperature T0 = 440 nK.

Atoms are first loaded from the background Rb vapor into
a three-dimensional MOT for about 900 ms in a commercial
ultrahigh vacuum chamber (miniMOT from ColdQuanta, Inc.).
The MOT coils are then switched off to perform sub-Doppler
cooling for 30 ms. Through a time-of-flight measurement,
the temperature of the atomic ensemble at this stage is about
10 µK. We conduct a microwave spectroscopy on the Zeeman
sublevels and minimize the energy splitting between Zeeman
states by applying external magnetic fields from three pairs
of Helmholtz coils. The ambient magnetic field is reduced
to about less than 10 kHz on the adjacent Zeeman sublevels.
To avoid heating, we adiabatically ramp up the power of the
lattice beams in 800 µs to load atoms into the optical lattice.
Meanwhile, a tens of mG of magnetic field for defining the
quantization axis and to split the Zeeman degeneracy is turned
on before switching on the lattice beams.

The optical pumping beam with a beam waist of 7 mm and
total power of 1 mW is generated from another extended cavity
diode laser at 795 nm and propagating along the direction 10◦

from the quantization axis. The polarization of the optical
pumping beam is circular and the offset angle from the z
axis gives a ratio of 5%–10% on the π -polarized component
and σ+-polarized component. The frequency of the optical
pumping beam is detuned by # from the D1 line F = 3 to
F ′ = 2 transition. Even with a small probability, atoms are
pumped to the F = 2 state and leave the cooling process. We
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Figure 3.10: The optical setup of Raman sideband cooling. The details of compo-

nents in the setup are explained in the text.
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Figure 3.11: The contour plot shows the energy distribution of the lattice potential

U in Eq. 3.27. The blue to red color indicates the potential energy from low to high

values.

Another function of the lattice field is to play the role of two-photon Raman

field. Usually, two fields with different frequencies are required to drive a stimulated

Raman transition for population transfer from one state to another with different
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energy. In our experiment, we applied an external magnetic field along z axis to

shift the energy of the Zeeman states with one vibrational level spacing (!ωvib), and

tilted a small polarization angle (20 ) to create π and σ± polarization simultaneously.

The lattice field could, therefore, drive the degenerate Raman transitions (see Fig.

3.9), which dramatically simplified the optical setup.

The optical pumping field was sent nearly vertically to the atomic cloud. We

used a non-polarizing beam splitter (NPBS) and a gold mirror to steer the optical

pumping beam into the atomic cloud, and tilted a small orientation angle (10 ) along

the vertical direction to create an extra π polarization as shown in Fig. 3.9. The

CCD camera was used to record the fluorescent image of the atomic cloud on xy

plane and measure the temperature of the atomic ensemble along x and y axes (the

calculation equation is the same as Eq. 2.8). The results are shown in Fig. 3.12.

Figure 3.12: The program interface of the CCD image acquisition and the measured

temperature of x and y profiles.

3.2.3 Time Sequence

As discussed in Section 3.2.1 and 3.2.2, the time sequence of our Raman sideband

cooling system shown in Fig. 3.13 is composed of four parts. Firstly, MOT fields
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FIG. 3. Timing sequence. The sub-Doppler cooling process ends
at t = 0 s and the t = 1 s, where MOT cooling, repumping beams,
and anti-Helmholtz are off. Each experimental trial lasts for 2 s. Each
second differs in the imaging time for the time-of-flight measurement.
The optical pumping beam is on for 2.4 ms. The optical lattice power
is ramped up and down in 800 µs. The sideband cooling duration in
the diagram includes only the time where the optical pumping beam
is on.

use the MOT repumping beams to pump atoms back into the
F = 3 state to continue the cooling process. We then turn on
the MOT cooling and repumping beams at 7 and 22 ms after
the sideband cooling and collect the fluorescence by a CCD
camera from the top of the lattice plane. We fit the images
with a single Gaussian function and the fitted 1/e2 widths are
used to calculate the temperature of the atomic cloud through
the equation of ballistic expansion. The error bar of each data
point of temperature measurement throughout this article only
takes into account the fitting error and is about the size of the
symbol. Any deviations from the theoretical fittings are due
to the time-dependent drift of the optical dipole potential or
the ambient magnetic field. The timing sequence is shown in
Fig. 3.

III. RESULTS AND DISCUSSIONS

In Fig. 4, we measure the temperature as a function of
optical pumping beam power at different optical pumping
beam detunings. The data are taken with 21 kHz of vibrational
energy and 1 mW of optical pumping beam power. We fit the
data with an energy rate equation which is the sum of the
sideband cooling rate and heating rate from the recoil during
the optical pumping process [12,28]. The curve fitting also
takes into account the adiabatic cooling by ramping down the
lattice power in 800 µs [29]. Although the σ+-polarized optical
pumping beam at −4 MHz detuning causes a larger energy
shift (tens of kHz) and broadening (tens of kHz) on the energy
levels than −20 MHz detuning, the final temperature does
not depend on the detuning. This is due to the decoupling of
the |F = 3,mF = 2,n = 0⟩ and |F = 3,mF = 3,n = 0 and 1⟩
states from the strong σ+-polarized optical pumping beam and
is only addressed by the weak π -polarized optical pumping
beam. The increase of the temperature over a large optical
pumping beam power at −4 MHz detuning is due to radia-
tion pressure pushing atoms away from the lattice area. We
investigate this increase of temperature in Fig. 5.

Figure 5 shows the temperature of the atomic ensemble with
different cooling durations. Each experimental data point is an
average of 30 experimental trials. Due to the arrangement of the

FIG. 4. The final temperature in the y axis as a function of optical
pumping beam total power with different detunings #. The blue
circles and red triangles correspond to −4 and −20 MHz detuning
from the D1 line F = 3 to F ′ = 2 transition, respectively. The lattice
beams have a waist of 7 mm and 47 mW on each beam and the
cooling process is held for 2.4 ms. The dashed line indicates the recoil
temperature of 85Rb. The curves are the theoretical fitting discussed
in the text.

optical pumping beam (see Fig. 2), atoms receive a momentum
kick of h̄kop in the direction orthogonal to the lattice plane for
each scattering event and, therefore, will drift out of the high
trapping potential area for a longer cooling duration, where
kop is the wave vector of the optical pumping beam. We fit the
data with an energy rate equation as in the fitting of Fig. 4.
We assume the sideband cooling process reaches equilibrium
at 2.4 ms in which atoms stop receiving momentum kicks in

FIG. 5. The final temperature after sideband cooling as a function
of the cooling duration. The total optical pumping beam power
is 1 mW and the detuning # = +20 MHz from |5S1/2,F = 3⟩ to
|5P1/2,F

′ = 2⟩ transition. Each lattice beam power is 47 mW. The
measurements are done in the y axis.
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Figure 3.13: The time sequence of the Raman sideband cooling. The detail is

explained in the text.

containing the cooling field, the repump field and the quadrupole magnetic field,

were implemented to build a cold atomic ensemble with the temperature around 20

µK (see the details in Sections 1.1.4 and 2.2.1). Secondly, the magnetic field along

z-axis was switched on to shift the Zeeman states and define the quantization axis

for atom-light interaction. We extended the duration of 4 ms before and after the

cooling process, to ensure a steady state of the magnetic field along z-axis during

the cooling process. Thirdly, the lattice field was adiabatically switched on for a

2D optical lattice and transfered the population to the vibrational (motional) states

with smaller quantum numbers by two-photon degenerate Raman transitions. The

lattice pulse was created by a function generator following Eq. 3.29, which was

optimized with the duration 4 ms. The rising / falling time 0.8 ms of the lattice

pulse was shown in Fig. 3.14. The adiabaticity of the lattice pulse was very crucial,

where the rising stage loaded atoms into the lattice trap with a slowly-increased

potential well shown in Fig. 3.14, to prevent the atoms from the internal transition

to higher lattice bands in the beginning; the falling stage could process the adiabatic

cooling to cool down the atoms further [33] after Raman sideband cooling. Fourthly,

the optical pumping field and 2-state repump field were introduced during the steady

state of the lattice field (the 2.4 ms plateau in Fig. 3.14) to pump the population

into the dark state |F = 3,mF = 3⟩ and finish the cooling process. Also, at 7 and 22

ms after the cooling process, MOT field was opened again for atomic cloud imaging
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to measure the temperature with time-of-flight method in Eq. 2.8.

I = tanh(b(t− 0.4)) + tanh(−b(t− 3.6)) (3.29)

Figure 3.14: The time profile of the lattice pulse created by a function generator

with Eq. 3.29. b is 6 in this figure, which is proportional to the rising / falling slope.

3.3 Data and Discussion

In our experiment [18], Raman sideband cooling could achieve 400 nK, which is

very close to the recoil temperature 357 nK for D1 transition. Figure 3.15 shows

the atomic cloud profiles at 7 and 22 ms release time after Raman sideband cooling

process. The width of the atomic cloud is smaller after sideband cooling compared

to the atomic ensemble only cooled by Doppler cooling and sub-Doppler cooling

techniques. Another reason we chose Raman sideband cooling was its low loss of

atoms. Raman sideband cooling transfers the population from higher energy levels

to lower energy levels instead of abandoning them. In our experiment, more than

60% of atoms remained in the trap after Raman sideband cooling.

To confirm that atoms were pumped to the spin-polarised state after the cooling

process, the Zeman spectrum was measured as shown in Fig. 3.17. We integrated

the acquired intensity data of the 2D cloud image after the population transfer by
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Figure 3.15: Spatial profiles of the atomic cloud with and without Raman sideband

cooling (RSC) at 7 and 22 ms release time after the cooling process.

the radio wave and the removal of atoms in |F = 3⟩ by a blow-away field (see Fig.

3.16). We scanned the radio wave frequency to measure the population of atoms in

the Zeeman states as shown in Fig. 3.17. Owing to the fluctuation of the laser power,

magnetic field, and the small Zeeman splitting, we were not able to resolve all the

Zeeman sub-levels. Nonetheless, an obvious peak on the left-handed side showed

that the population was pumped to the spin-polarized state |F = 3,mF = 3⟩ after
Raman sideband cooling.

3.3.1 Dependency of Cooling Temperature

The final temperature achieved by Raman sideband cooling is the result of the

competition between cooling and heating mechanisms. Refer to Reference [34], the

energy change ∆E of atoms in a cooling cycle is:

∆E = !ωvib(2η
2 − 1). (3.30)

The first term in Eq. 3.30 refers to the increase of two recoil energy ER from

the optical pumping field (absorption and emission) in each cooling cycle, and the

second term is related to the decrease of the energy of an atom by one quanta of

the vibrational energy !ωvib. The cooling effect takes place when ∆E is negative.

Please note that the population transfer caused by two-photon degenerate Raman

transition is not homogeneous due to the fluctuation or the spatial gradient of the
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Figure 3.16: The measurement scheme of Zeeman spectrum.
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Figure 3.17: Zeeman spectrum with and without Raman sideband cooling.
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lattice field power and z-axis magnetic field. As a result, the cooling efficiency might

not be uniform through the whole atomic ensemble.

Assuming the cooling is uniform in the ensemble, we consider an empirical equa-

tion of the time evolution of the cooling temperature of atoms as below:

dT

dt
=

!ωvibnγ(2η2 − 1)

kB
, (3.31)

where n is the average occupation number of atoms in the harmonic potential and

can be written as a function of temperature from the partition function of the energy

series of the harmonic oscillator states shown in Eq. 3.32:

n =
∞∑

v=0

exp(− !ωvib(v +
1

2
)/kBT)

≈ e− 1
2
!ωvib/kBT

1− e− !ωvib/kBT
=

1− 1
2
!ωvib

kBT
!ωvib

kBT

=
T − T0

2T0
(3.32)

T0 =
!ωvib

2kB
. (3.33)

In Eqs. 3.32 and 3.33, T0 is the temperature of atoms with zero-point energy

!ωvib/2. γ in Eq. 3.31 is the photon scattering rate of the optical pumping field,

calculated as below:

γ =
I/IsΓ/2

1 + 4(∆/Γ)2
, (3.34)

where I is the intensity of the optical pumping field, Is (8 mW/cm2) is the saturation

intensity of 85Rb D1 transition |F = 3⟩ → |F ′ = 2⟩ with π polarization, and

Γ and ∆ are the spontaneous decay rate of |F ′ = 2⟩ state and the detuning of

|F = 3⟩ → |F ′ = 2⟩ transition driven by the optical pumping field, respectively. The

temperature after Raman sideband cooling process could be derived after modifying

Eq. 3.31 shown as follows:
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dT

dt
=

!ωvib · T−T0

2T0
· γ(I,∆)(2η2 − 1)

kB
= −A

T

T0
+ A (3.35)

A = −!ωvibγ

2kB
(2η2 − 1)

Tf∫

Ti

dT

−A T
T0

+ A
=

tf∫

0

dt (3.36)

Tf = T0 + (Ti − T0)e
−tf

A
T0 , (3.37)

where Ti and Tf are the temperature before and after Raman sideband cooling

process, respectively, and tf is the time duration of the cooling process, which is 2.4

ms in our optimized case (see Fig. 3.14). After Raman sideband cooling process, the

lattice power is slowly ramped to zero, where the population on the vibrational states

would stay in their original states without internal transitions. When the vibrational

level spacing !ωvib decreases, atoms gradually lose the potential energy from the

lattice trap and keep the same population distribution exp(−!ωvib(v + 1/2)/kBT )

based on Boltzmann distribution. As a result, the final temperature T decreases,

which is called the adiabatic cooling, as mentioned in Section 3.2.3. Referring to

Reference [33], the final temperature Tff could be derived as follows:

Tff = TR(
Q0

k
)2
1 + 4fB + f2

B

12(1− fB)2
, (3.38)

where TR is the recoil temperature and Q0 is the spatial frequency in k-space,

(a∗i = km − kn) as discussed in Section 3.1.1.2. In our 2D triangular lattice,

Q0 =
√
3k, where k is the wavevector of the lattice field. fB is Boltzmann fac-

tor exp(−!ωvib/kBTf ). We fit our experimental data with the theoretical model

of Eqs. 3.37 and 3.38 of the final temperature Tff on the cooling duration, the

detuning of the optical pumping field and the lattice field power.

Figures 3.18 and 3.19 show the temperature as a function of the cooling duration

tf . In this experiment, the temperature gradually decreased with the time duration

of the cooling process, which followed the time evolution of the ensemble temperature

in Eq. 3.31, as shown in Fig. 3.18. However, the temperature rised in longer

cooling duration cases because atoms sliped out of the dipole trap along z-axis,

where the vibrational frequency ωvib became a function of time. When the atoms

started to escape from the dipole trapping beam area, the cooling mechanism cannot
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Figure 3.18: The cooling temperature as a function of the duration of Raman side-

band cooling. The power and detuning of the optical pumping field are 1 mW and

+20 MHz, respectively; the power of the lattice field is 47 mW per beam; and the

temperature is measured with y-axis profile. In the theoretical fit, the vibrational

frequency ωvib is assumed as a constant.

work efficiently, which resulted in the increase of the temperature. The tendency of

the increase of the temperature matches our theoretical model and shows that the

optimized duration for the cooling process is 2.4 ms, as shown in Fig. 3.19.

The optical pumping field played an important role in Raman sideband cooling,

so we checked the cooling temperature as a function of the optical pumping field

power with different detuning ∆, as shown in Fig. 3.20. The fitting results of the

final temperature matched our theoretical model in the low power range as shown

in Fig. 3.21. When the power I of the optical pumping field increased, it blew the

atomic ensemble away, which is the reason why the temperature increased and some

data points were missing in the high power region. We also checked four detuning

values and measured the final temperature. Different detuning ∆ had a similar trend

as a function of the pumping field power. However, when the sign of the detuning

reversed, the behaviour was different due to the sign of AC Stark shift. The red

detuned optical pumping field shifted the vibrational levels down, which increased

the coupling between the dark state |F = 3,mF = 3, v = 0⟩ and the neighbour

vibrational state |F = 3,mF = 2, v = 0⟩. As a result, the intended dark state
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FIG. 3. Timing sequence. The sub-Doppler cooling process ends
at t = 0 s and the t = 1 s, where MOT cooling, repumping beams,
and anti-Helmholtz are off. Each experimental trial lasts for 2 s. Each
second differs in the imaging time for the time-of-flight measurement.
The optical pumping beam is on for 2.4 ms. The optical lattice power
is ramped up and down in 800 µs. The sideband cooling duration in
the diagram includes only the time where the optical pumping beam
is on.

use the MOT repumping beams to pump atoms back into the
F = 3 state to continue the cooling process. We then turn on
the MOT cooling and repumping beams at 7 and 22 ms after
the sideband cooling and collect the fluorescence by a CCD
camera from the top of the lattice plane. We fit the images
with a single Gaussian function and the fitted 1/e2 widths are
used to calculate the temperature of the atomic cloud through
the equation of ballistic expansion. The error bar of each data
point of temperature measurement throughout this article only
takes into account the fitting error and is about the size of the
symbol. Any deviations from the theoretical fittings are due
to the time-dependent drift of the optical dipole potential or
the ambient magnetic field. The timing sequence is shown in
Fig. 3.

III. RESULTS AND DISCUSSIONS

In Fig. 4, we measure the temperature as a function of
optical pumping beam power at different optical pumping
beam detunings. The data are taken with 21 kHz of vibrational
energy and 1 mW of optical pumping beam power. We fit the
data with an energy rate equation which is the sum of the
sideband cooling rate and heating rate from the recoil during
the optical pumping process [12,28]. The curve fitting also
takes into account the adiabatic cooling by ramping down the
lattice power in 800 µs [29]. Although the σ+-polarized optical
pumping beam at −4 MHz detuning causes a larger energy
shift (tens of kHz) and broadening (tens of kHz) on the energy
levels than −20 MHz detuning, the final temperature does
not depend on the detuning. This is due to the decoupling of
the |F = 3,mF = 2,n = 0⟩ and |F = 3,mF = 3,n = 0 and 1⟩
states from the strong σ+-polarized optical pumping beam and
is only addressed by the weak π -polarized optical pumping
beam. The increase of the temperature over a large optical
pumping beam power at −4 MHz detuning is due to radia-
tion pressure pushing atoms away from the lattice area. We
investigate this increase of temperature in Fig. 5.

Figure 5 shows the temperature of the atomic ensemble with
different cooling durations. Each experimental data point is an
average of 30 experimental trials. Due to the arrangement of the

FIG. 4. The final temperature in the y axis as a function of optical
pumping beam total power with different detunings #. The blue
circles and red triangles correspond to −4 and −20 MHz detuning
from the D1 line F = 3 to F ′ = 2 transition, respectively. The lattice
beams have a waist of 7 mm and 47 mW on each beam and the
cooling process is held for 2.4 ms. The dashed line indicates the recoil
temperature of 85Rb. The curves are the theoretical fitting discussed
in the text.

optical pumping beam (see Fig. 2), atoms receive a momentum
kick of h̄kop in the direction orthogonal to the lattice plane for
each scattering event and, therefore, will drift out of the high
trapping potential area for a longer cooling duration, where
kop is the wave vector of the optical pumping beam. We fit the
data with an energy rate equation as in the fitting of Fig. 4.
We assume the sideband cooling process reaches equilibrium
at 2.4 ms in which atoms stop receiving momentum kicks in

FIG. 5. The final temperature after sideband cooling as a function
of the cooling duration. The total optical pumping beam power
is 1 mW and the detuning # = +20 MHz from |5S1/2,F = 3⟩ to
|5P1/2,F

′ = 2⟩ transition. Each lattice beam power is 47 mW. The
measurements are done in the y axis.

023403-3

Figure 3.19: The cooling temperature as a function of the duration of Raman side-

band cooling. The power and detuning of the optical pumping field are 1 mW and

+20 MHz, respectively; the power of the lattice field is 47 mW per beam; and the

temperature is measured with y-axis profile. In the theoretical fit, the vibrational

frequency ωvib is set as a function of the cooling duration due to the escape of atoms

from the dipole trap on z-axis.
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was not dark, which caused the atomic ensemble being blown away. Because the

optimized final temperatures did not depend on the detuning of the optical pumping

field, the larger blue detuning (+20 MHz) and higher power (1 mW) were chosen in

our experiment for the lower power sensitivity.
LASER COOLING OF 85Rb ATOMS TO THE RECOIL- … PHYSICAL REVIEW A 97, 023403 (2018)

FIG. 3. Timing sequence. The sub-Doppler cooling process ends
at t = 0 s and the t = 1 s, where MOT cooling, repumping beams,
and anti-Helmholtz are off. Each experimental trial lasts for 2 s. Each
second differs in the imaging time for the time-of-flight measurement.
The optical pumping beam is on for 2.4 ms. The optical lattice power
is ramped up and down in 800 µs. The sideband cooling duration in
the diagram includes only the time where the optical pumping beam
is on.

use the MOT repumping beams to pump atoms back into the
F = 3 state to continue the cooling process. We then turn on
the MOT cooling and repumping beams at 7 and 22 ms after
the sideband cooling and collect the fluorescence by a CCD
camera from the top of the lattice plane. We fit the images
with a single Gaussian function and the fitted 1/e2 widths are
used to calculate the temperature of the atomic cloud through
the equation of ballistic expansion. The error bar of each data
point of temperature measurement throughout this article only
takes into account the fitting error and is about the size of the
symbol. Any deviations from the theoretical fittings are due
to the time-dependent drift of the optical dipole potential or
the ambient magnetic field. The timing sequence is shown in
Fig. 3.

III. RESULTS AND DISCUSSIONS

In Fig. 4, we measure the temperature as a function of
optical pumping beam power at different optical pumping
beam detunings. The data are taken with 21 kHz of vibrational
energy and 1 mW of optical pumping beam power. We fit the
data with an energy rate equation which is the sum of the
sideband cooling rate and heating rate from the recoil during
the optical pumping process [12,28]. The curve fitting also
takes into account the adiabatic cooling by ramping down the
lattice power in 800 µs [29]. Although the σ+-polarized optical
pumping beam at −4 MHz detuning causes a larger energy
shift (tens of kHz) and broadening (tens of kHz) on the energy
levels than −20 MHz detuning, the final temperature does
not depend on the detuning. This is due to the decoupling of
the |F = 3,mF = 2,n = 0⟩ and |F = 3,mF = 3,n = 0 and 1⟩
states from the strong σ+-polarized optical pumping beam and
is only addressed by the weak π -polarized optical pumping
beam. The increase of the temperature over a large optical
pumping beam power at −4 MHz detuning is due to radia-
tion pressure pushing atoms away from the lattice area. We
investigate this increase of temperature in Fig. 5.

Figure 5 shows the temperature of the atomic ensemble with
different cooling durations. Each experimental data point is an
average of 30 experimental trials. Due to the arrangement of the

FIG. 4. The final temperature in the y axis as a function of optical
pumping beam total power with different detunings #. The blue
circles and red triangles correspond to −4 and −20 MHz detuning
from the D1 line F = 3 to F ′ = 2 transition, respectively. The lattice
beams have a waist of 7 mm and 47 mW on each beam and the
cooling process is held for 2.4 ms. The dashed line indicates the recoil
temperature of 85Rb. The curves are the theoretical fitting discussed
in the text.

optical pumping beam (see Fig. 2), atoms receive a momentum
kick of h̄kop in the direction orthogonal to the lattice plane for
each scattering event and, therefore, will drift out of the high
trapping potential area for a longer cooling duration, where
kop is the wave vector of the optical pumping beam. We fit the
data with an energy rate equation as in the fitting of Fig. 4.
We assume the sideband cooling process reaches equilibrium
at 2.4 ms in which atoms stop receiving momentum kicks in

FIG. 5. The final temperature after sideband cooling as a function
of the cooling duration. The total optical pumping beam power
is 1 mW and the detuning # = +20 MHz from |5S1/2,F = 3⟩ to
|5P1/2,F

′ = 2⟩ transition. Each lattice beam power is 47 mW. The
measurements are done in the y axis.
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Figure 3.21: The cooling temperature is a function of the optical pumping power in

the low power range of Fig. 3.20 with -4 and -20 MHz detuning from |F = 3⟩ →
|F ′ = 2⟩. The solid lines are the corresponding fitting curves based on Eqs. 3.37

and 3.38.

Figure 3.22 shows the cooling temperature as a function of the lattice power.

In this experiment, the power and the detuning of the optical pumping field were

1 mW and +20 MHz, respectively. The cooling duration was 2.4 ms, and the z-

axis magnetic field was optimized for different vibrational level spacings ωvib. The

lattice power was converted to Lamb-Dicke parameter η (see Eqs. 3.24, 3.25 and

3.30) for the curve fitting. The heating effect increased with the decreasing lattice

power (increasing η), so the temperature would increase shown in our theoretical

model. The temperature difference between x and y axes came from the imperfect

alignment of the lattice beams, so the vibrational energies in different axes were not

degenerate, which caused the difference of the final temperature. The ground state
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temperature was calculated from the zero-point energy of the harmonic oscillator

model, and we can see that the experimental temperature started to approach the

ground state temperature in the low limit range with η < 0.45, which meant the

population did not completely transfer to the lowest vibrational state (v = 0) or the

harmonic oscillator model deviated from the lattice band structure in the low power

region of the lattice field.
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FIG. 6. The final temperature with varying optical potential in the
x and y directions. The horizontal axis is the corresponding Lamb-
Dicke parameter. The blue triangles are the calculated temperature of
the ground-state energy of the harmonic potential for reference. The
fitting curve is for the x axis only.

the optical pumping beam direction. Atoms start to drift out
of the lattice area at a constant initial velocity at 2.4 ms and
the vibrational energy is set as a function of the time in the
fitting. The increase of the temperature is mainly due to the
adiabatic cooling process which works more efficiently at a
larger vibrational energy [29].

In Fig. 6, we measure the temperature of atoms with dif-
ferent Lamb-Dicke parameters (different lattice beam power)
in two orthogonal directions, x and y. At each Lamb-Dicke
parameter, we adjust the z-axis magnetic field to optimize the
temperature. The cooling duration are kept at 2.4 ms and the
optical pumping beam power is 1 mW at +20 MHz detuning.
We compare the measured temperature with the calculated
ground-state temperature at different Lamb-Dicke parameters.
The atoms’ temperature starts to approach the ground-state
temperature at around η = 0.45 in our experiment. The red
curve shows the theoretical fitting of the x-axis measurement.

The fitting uses the same energy rate equation as in Fig. 4
but sets η as the fitting variable. Due to the imperfection
of the alignment of the lattice beams, the two axes have
a slightly different lattice potential which leads to different
final temperatures. Besides the Lamb-Dicke parameter, the
cooling efficiency is limited by how dark the final state can be.
The single-photon scattering from the lattice beams and the
π -polarized optical pumping beam could pump atoms out of
the |F = 3,mF = 3,n = 0⟩ state. A light shift and broadening
of the optical pumping beam could cause an off-resonant
Raman transition which heats up instead of cools down the
atoms or couples atoms out of the dark state [12].

We estimate the density of the atomic ensemble by measur-
ing the optical depth (OD) after sideband cooling. A circularly
polarized probe beam of 1 µW and 2 µs long, resonant on
the D2 line F = 3 to F ′ = 4, is sent along the quantization
axis direction. We measure the transmission of the probe beam
and obtain OD = 7(2). Combining the size of the ensemble
L = 0.7(2) mm in the z direction, we calculate the number
density of atoms n = 8.0(3) × 1010 cm−3 after sideband cool-
ing from OD = σnL, where σ is the resonant cross section
for isotropic light polarization. The corresponding phase-space
density nλ3

dB is about 1/581, where λdB is the thermal de
Broglie wavelength.

IV. CONCLUSION

In summary, we demonstrate the laser cooling of optically
trapped 85Rb atoms in a harmonic potential within 2.4 ms. The
final temperature is consistently around the recoil temperature
Tr = 370 nK and the number of atoms after cooling is 1.4(2) ×
107. It can be extended to three-dimensional cooling by adding
another lattice beam in the z axis. This low-temperature atomic
ensemble could be used to enhance other cooling methods such
as evaporation cooling and delta-kick cooling in time and total
atomic numbers for quantum optics and fundamental physics
experiments with 85Rb.
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Figure 3.22: The cooling temperature is a function of Lamb-Dicke parameter η. The

black squares and the green circles are the temperatures measured with x-axis and

y-axis profiles; the red solid line is the theoretical fitting curve of x-axis data; the

blue triangles are the calculated ground state temperatures.

The density of the atomic ensemble was estimated by measuring the optical

depth (OD) after Raman sideband cooling. A circularly polarised probe beam of 1

µW and 2 µs long, resonant on the D2 line |F = 3⟩ → |F = 4⟩, was sent along the

quantisation axis direction. We measured the transmission of the probe beam and

obtained OD = 7(2). Combining the size of the ensemble L = 0.7(2) mm in the

z-direction, we calculated the number density of atoms n = 8.0(3)×1010 cm−3 after

Raman sideband cooling with OD = σnL, where σ is the resonant cross section for

isotropic light polarisation. The corresponding phase-space density nλ3
dB is about
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1/581, where λdB is the thermal de Broglie wavelength. The final temperature is

consistently around the recoil temperature TR = 370 nK, and the number of atoms

after cooling are 1.4(2) × 107. It can be extended to three-dimensional cooling by

adding another lattice beam in the z-axis. This performance will be the foundation

for our further experiments, e.g. Bloch oscillation in Chapter 4.
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Chapter 4

Motion Sensing in Periodic

Potential

In Chapter 2, a new measuring method using the EIT-enhanced light dragging effect

is introduced. In that experiment, the atomic ensemble moved in a free space, driven

by momentum kicks from the push field. After that, we focused on the collective

behaviour of atoms in a driven periodic potential. In particular, we investigated

Bloch oscillation of atoms using light-dragging method for the potential applications

of the precision measurement of the recoil velocity in the driven potential, and

studied the topological phases of the spin wave in the moving medium.

Bloch oscillation is a pure quantum phenomenon, “anticipated” by Felix Bloch in

1929 [1]. The basic idea is that, when a particle in a lattice is applied by an inertial

force, its velocity will oscillate, rather than a monotonic increase. From the research

of the electrical conductivity of the solid lattice, Bloch found that the microscopic

behaviour of electrons does not simply follow the classical electromagnetism equa-

tion: J = σE, where J is the current density, σ is the electrical conductivity, and

E is the external electric field. He predicted the oscillatory behaviour based on the

derivation from quantum theories. Unfortunately, this phenomenon could not be

demonstrated and observed in a normal solid system, because the Bloch oscillation

period was much longer than the defect scattering period in a solid lattice. For ex-

ample, the concentration of the lattice vacancy defects of FCC (face centered cubic)

copper in the room temperature is about 10−14 [2], and the relaxation (collision)

time of an electron is about 10−15 s [3], so the vacancy defect scattering period is

about 100 ms. Considering the effect of other defects, Bloch oscillation period must
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be longer than the defect scattering period. According to the second law of thermo-

dynamics, to minimize the Gibb’s free energy of the production of the solid lattice,

the defects (e.g. vacancies, dislocations [4], interstitial sites [5], grain boundaries

and many kinds of impurities) naturally exist in all solid matters, as Fig. 4.1 illus-

trates. The concentration of them in the room temperature can be large, no matter

which crystal is. When an electron moves in a solid lattice, it would be scattered or

deflected by an asymmetric surrounding particles, which is caused by any of defects.

Therefore, the oscillation behaviour is hard to be observed.

Figure 4.1: Left : dislocation defect in a crystal [4]; Right : an interstitial defect and

a vacancy of a sodium atom co-exist to balance the charge neutrality in an ionic

crystal [5].

In 1993, Waschke et al. observed Bloch oscillation in a semiconductor crystal by

detecting the radiation emitted by electrons [6]. With the help of the superlattice

structure, the oscillation period could be 600 fs, much shorter than that in the metal,

which made the possibility of the completion of the oscillation. Compared with the

challenges in a real lattice, there are some inherent advantages for the optical lattice:

1. the optical lattice is created by the light field, so it can be turned on or off in any

time; 2. the optical lattice is a perfect lattice without any defect of the real lattice,

so atoms have a long lifetime to complete the oscillation; 3. the lattice vectors (base

vectors in k-space, see Section 3.1.1.2) a∗i are well defined, so it is easy to modify
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and analyse the behaviours of atoms in this artificial structure. In Chapter 3, we

introduce Raman sideband cooling to cool down atoms to the recoil temperature.

In this chapter, the detail of Bloch oscillation after Raman sideband cooling will be

discussed.

4.1 Bloch Oscillation

Bloch “oscillation” sounds like a classical motional behaviour of particles, but it is

truly a pure quantum phenomenon, which verifies the wave-particle duality of the

matter. Here, atoms (or other particles) are treated as matter waves and interact

with a periodic structure with the wave nature. When atoms are accelerated by

some external force, their average momentum (wavevector) would linearly increase

up to a critical value, e.g. the half of the lattice vector a∗i in the first Brillouin zone,

and then reflect with the reversed momentum. For Bloch oscillation in a 1D optical

lattice, the oscillation amplitude is not determined by the physical distance between

lattice planes, and the oscillation period is not a function of the lattice trapping

potential. To explain Bloch oscillation in an optical lattice, two pictures: moving

lattice picture and quantum optics picture are used.

4.1.1 Moving Lattice Picture

In the theoretical frame of solid state physics, the Hamiltonian of the particle in a

1D periodic potential is:

ĤM =
p̂2M
2M

+ Û(z). (4.1)

Equation 4.1 neglects the internal motion of the electrons in the atom, where p̂M is

the momentum of the center of mass of the atom; M is the mass of the atom; Û(z)

is the periodic potential created by the optical lattice, with the same definition as

Eq. 3.18, which is a function of the position on z-axis. Based on Bloch theorem,

the wave function Ψ of an atom in a lattice can be written as:

Ψn,q(z) = eiqzun,q(z), (4.2)

where n is a discrete quantum number of the lattice energy bands; q is a continuous
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quasi-momentum of the atom, which is the momentum conserved within the lattice

vector
(
q = p∗M + Na∗i , where p∗M is the real momentum of the atom with the

average velocity ⟨v⟩ (⟨v⟩ = !−1(dE/dq)) and the effective mass M∗ in the lattice
(
M∗ = !2(d2E/dq2)−1

)
; N is any integer; a∗i is the absolute value of the lattice

vector; E is the total energy of the atom in the lattice
)
. In addition, un,q(z) is

the periodic wavepacket function corresponding to the lattice structure and the

intrinsic properties of the atom; Ψn,q(z) is also called Bloch state, which describes

how the matter wave of the atom distributes in the lattice, such as a plane wave

exp(iqz) with some specific waveform un,q(z). In Section 3.1.1.1, we assume that the

radial trapping is uniform because of the large size of our lattice light beams, which

well supports the approximation of the atomic plan wave in the axial direction. To

accelerate atoms, an external force F is applied on the atom, so the quasi-momentum

q and atomic wavepacket function un,q become time-dependent as below:

Ψn,q(z, t) = eiq(t)zun,q(z, t) (4.3)

q(t) = q(0) +
Ft

! . (4.4)

Equation 4.4 describes the linear increase of the atomic quasi-momentum q(t) under

a constant external force F . However, an atom is electrically neutral, so the external

electric field does not work in this case. Instead, a moving lattice is implemented

to accelerate cold atoms for Bloch oscillation. In Fig. 4.2, when the atom starts

to interact with two lattice fields, the frequency detuning between the two fields

provides an initial velocity v of the atom. However, the light fields with different

frequencies cannot construct a standing wave (optical lattice) in the lab frame, so it

is necessary to consider this configuration in the moving frame of the atom. Based

on the first order of Doppler effect, moving atoms actually experience the light field

with a frequency shift k ·v, which is kv in 1D case as shown in Eqs. 4.5 - 4.7, where

k is the wavevector of the lattice field.

ω1 − k1v = ω2 + k2v (4.5)

v =
∆ω

2k
(∆ω = ω1 − ω2) (4.6)

a =
d

dt
(
∆ω

2k
) =

∆ω̇

2k
. (4.7)

83



Figure 4.2: An atom experiences a moving lattice in its frame with the detuning

between two lattice fields (ω1 > ω2).

Equation 4.5 shows the condition of the moving lattice. Under the approximation

k1 ≈ k2 = k, the velocity of the moving lattice is equal to the velocity of the atom,

as shown in Eq. 4.6. Because the velocity of the atom can be controlled by the

detuning between two lattice fields, it is possible to tune the acceleration of the

atom’s velocity as well. Equation 4.7 shows the correlation between the acceleration

a and the change of the frequency ∆ω̇. If the detuning ∆ω is linearly ramped up,

the external force F caused by the moving lattice is a constant value (F = −Ma)

and the quasi-momentum q(t) in Eq. 4.4 would linearly increase over time.

In the moving lattice, the band structure is the same as the static lattice. Figure

4.3 shows the difference between the free particle case and the lattice case in the

first Brillouin zone [7]. The energy E of free particles is a parabolic function of the

momentum p (E = p2/2M), so there is no inflection and the possibility to oscillate.

Based on Bloch theorem, when atoms distribute in a periodic potential, the lattice

potential interacts with the atoms periodically, and finally produce allowed energy

bands and forbidden energy gaps. As (b) in Fig. 4.3 [7], we can see the quasi-

momentum span is from −π/d to π/d, and there are some band gaps near the

Brillouin zone boundaries (q = ∓π/d or ∓k) between two energy bands, which

plays a key role in Bloch oscillation.

With the band structure and the external force F , the mechanism of Bloch

oscillation in the 1D lattice is shown in Fig. 4.4. Initially, the atom is in an inertial
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The early quantum theory of electrical conductivity
in crystal lattices by Bloch and Zener [1,2] led to the
striking prediction that a homogeneous static electric field
induces an oscillatory rather than uniform motion of
the electrons. These so-called Bloch oscillations have
never been observed in natural crystals because the
scattering time of the electrons by the lattice defects is
much shorter than the Bloch period. In semiconductor
superlattices the larger spatial period leads to a much
shorter Bloch period (,600 fs) and Bloch oscillations
have recently been observed through the emission of THz
radiation by the electrons [3]. Here we present Bloch
oscillations of atoms in the fundamental energy band of
a periodic optical potential. We directly measure the
atomic momentum distribution evolving in time under the
influence of a constant inertial force for various potential
depths. We experimentally observe oscillation periods in
the millisecond range as well as positive and negative
effective masses.
Bloch oscillations are a pure quantum effect which

can be explained in a simple one-dimensional model.
The periodicity of the lattice (period d) leads to a
band structure (Fig. 1) of the energy spectrum of the
particle and the corresponding eigenenergies Ensqd and
eigenstates jn, ql (Bloch states) are labeled by the discrete
band index n and the continuous quasimomentum q;
Ensqd and jn, ql are periodic functions of q with period
2pyd and q is conventionally restricted to the first
Brillouin zone g2pyd, pydg [4]. Under the influence of
a constant external force F, weak enough not to induce
interband transitions, a given Bloch state jn, qs0dl evolves
(up to a phase factor) into the state jn, qstdl according to

qstd ≠ qs0d 1 Ftyh̄ . (1)
This evolution is periodic with a period tB ≠ hyjFjd cor-
responding to the time required for the quasimomentum to
scan a full Brillouin zone. The mean velocity in jn, qstdl

kylnsssqstdddd ≠
1
h̄

dEnsRsssqstdddd
dq

(2)

is an oscillatory function of time with zero mean. As a
consequence, a wave packet prepared with a well-defined
quasimomentum in the nth band will also oscillate in

position with an amplitude Dny2jFj where Dn is the
energy width of the nth band.
In our experiments the periodic potential results from

the light shift of the ground state of atoms illuminated by
a laser standing wave. The laser is detuned far from any
atomic resonance so that spontaneous emission can be ne-
glected. This configuration was first used in the context
of atom diffraction [5] leading to the development of atom
optics elements, interferometry [6,7], or studies of quantum
chaos [8]. In periodic potentials using lasers closer to reso-
nance, spatial ordering has been observed [9]. In this case
the concept of a band structure is useful [10], but experi-
mental evidence for it has only been indirect because spon-
taneous emission spreads the atom distribution over the
whole Brillouin zone [11]. Using one-dimensional Raman
laser cooling [12,13] we first prepare a gas of free atoms
with a momentum spread dp ≠ h̄ky4 in the direction of
the standing wave, where h̄k is the photon momentum.
The corresponding atomic coherence length hydp extends
over several periods d ≠ ly2 ≠ pyk of the optical lat-
tice. By adiabatically switching on the light potential this
initial momentum distribution is turned into a statistical
mixture of Bloch states in the ground energy band with a
quasimomentum width dq ≠ dpyh̄ much smaller than the

FIG. 1. Band structure Ensqd (solid line) for a particle in
a periodic potential Uszd ≠ U0 sin2pzyd and mean velocity
kyl0sqd in the fundamental band (dashed line): (a) free particle
case, (b) U0 ≠ E0 ≠ h̄2p2y2md2. A gap opens at q ≠
6pyd. Under the influence of a weak uniform force, a particle
prepared in the fundamental band remains in this band and
performs a motion periodic in time called a Bloch oscillation.

4508 0031-9007y96y76(24)y4508(4)$10.00 © 1996 The American Physical Society

Figure 4.3: The band structure En,q (solid lines) and the average velocity ⟨v⟩ (dash
lines) of the atom in a 1D lattice are a function of the quasi-momentum q. E0 is

the recoil energy; d is λ/2, the spatial period of the lattice. (a) free particle case;

(b) optical lattice case, which shows the difference near the periodic zone boundary

q = ±π/d from the free particle case in (a) [7].

frame at rest or with a constant velocity v. When the detuning ∆ω starts ramping,

the atom is applied by a force F , and its quasi-momentum q(t) follows the change

over the time. At half of the oscillation period (τB/2), the atom reaches the boundary

of the Brillouin zone. The zone boundary in the solid state physics is a special region

due to the two-way momentum kicks from the lattice vector a∗i . The same as the

boundary (q = ±π/d) of the optical lattice case in Fig. 4.3, the average velocity

of the atom
(
⟨v⟩ = !−1(dE/dq)

)
is 0 and its momentum is not well defined, which

mixes +k (+π/d) and −k (−π/d) due to the periodicity of the atomic wavefunction

in the lattice and the reversible two-photon Raman transition given by the lattice

field, which shifts the momentum +2!k or −2!k on the boundary position. At the

zone boundary, the atom has two choices: reflecting back by the 2!k momentum

kicks of two-photon Raman transition or jumping to a higher energy band. The

first choice is Bloch oscillation. The second choice causes the loss out of the moving

lattice, because Bloch oscillation on the higher energy band involves higher order of

multi-photon transitions. However, the probability of such a transition in a higher

energy band is much lower than that in the fundamental band. For example, the

four-photon transition is required for Bloch oscillation in the first excited band.

The work of Dahan et al. in Fig. 4.5 showed the experimental data of the direct

observation of Bloch oscillation [7]. The Cs atoms were accelerated by a moving
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Figure 4.4: The half cycle of Bloch oscillation. τB is the period of Bloch oscillation;

F is the external force caused by the accelerated frame; E[q(t)] means the atomic

energy is a functional of q(t); v′ and v” are the velocities at their respective time.

lattice, whose velocity was detected by Raman velocity-selective spectroscopy. In

this figure, the average momentum of the atomic ensemble kept increasing up to the

zone boundary at the half period τB/2, and gradually became a superposition state

with the momentum +k and −k. After τB/2, the momentum with a negative sign

(−k) dominated and kept increasing again. Finally the average momentum of atoms

returned to the initial value.

In the analysis above, the dynamics of the atom in the moving lattice look

similar with the harmonic oscillation in the classical dynamics. However, there are

several differences: 1. the curve of the band structure is not a parabolic, sine or

cosine function; 2. the external force is a constant value, so Bloch oscillation is

not a harmonic oscillation; 3. the oscillation happens in k-space, so the oscillation

amplitude is not related to the spatial period d of the lattice. Considering the

bandwidth ∆n (n = 0 for the fundamental band), the spatial amplitude As can be

derived by:
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FIG. 2. Bloch oscillations of atoms: momentum distributions
in the accelerated frame for equidistant values of the accel-
eration time ta between ta ≠ 0 and ta ≠ tB ≠ 8.2 ms. The
light potential depth is U0 ≠ 2.3ER and the acceleration is
a ≠ 20.85 mys2. The small peak in the right wing of the first
five spectra is an artifact.

These results can be explained as follows. Bloch states
of quasimomentum q are coherent superpositions of
plane waves, i.e., momentum states jp ≠ h̄sq 1 2jkdl
(j integer). Because of the applied force, q evolves in
time according to (1) with the initial condition qs0d ≠ 0.
In the perturbative case considered here (U0 ø 16ER),
for qstad , 0 the Bloch state jn ≠ 0, qstadl is very
close to the momentum state jp ≠ h̄qstadl: It has very
small populations [,sU0y16ERd2 . 1%] on the jp ≠
h̄qstad 6 2h̄kl momentum states. For qstad close to k, the
Bloch state is mainly a linear superposition of the jp ≠
h̄qstadl and jp ≠ h̄fqstad 2 2kgl momentum states, with
equal amplitudes for qstad ≠ k, i.e., for ta ≠ tBy2. For
tBy2 , ta , tB, qstad scans the g2k, 0f interval of the
Brillouin zone and the momentum distribution is turned
back into the single initial peak.
In order to further illustrate the oscillatory motion of

the atoms, we have deduced from our data the mean
atomic velocity as a function of ta for different val-
ues of the potential depth U0 and for an acceleration
a ≠ 60.85 mys2. We reduce the smoothing effect due to
the width of the quasimomentum distribution as follows:
We slice the initial momentum peak into narrow channels
labeled i, centered at qis0d and of width ky18. Follow-
ing the time evolution of each of these slices, we calculate
the mean velocity for the atoms in momentum channels
h̄qistad, h̄qistad 6 2h̄k where qistd evolves according to
(1). The contributions of the different channels are com-
bined in one curve after a time translation of h̄qis0dyF.
We have plotted in Fig. 3 the results for three values of

FIG. 3. Mean atomic velocity kyl as a function of the
acceleration time ta for three values of the potential depth: (a)
U0 ≠ 1.4ER , (b) U0 ≠ 2.3ER , (c) U0 ≠ 4.4ER . The negative
values of Fta were measured by changing the sign of F. Solid
lines: theoretical prediction.

U0yER. The measured Bloch periods agree with the ex-
pected value (8.2 ms) to within an uncertainty of 4% and
do not depend on U0. For U0 ≠ 0.54ER the amplitude
of the Bloch oscillations is 0.68h̄k and corresponds to an
oscillation in position of 3.1 mm. These amplitudes de-
crease with growing U0 [cf. Fig. 4(a)]: The band flattens
out as a consequence of the smaller tunnel coupling be-
tween neighboring sites of the lattice.
A striking feature of the oscillations presented in Fig. 3

is their asymmetry, which is particularly pronounced for
low values of the optical potential: The slope of the mean
velocity near the edge of the Brillouin zone (Fta ≠ 6h̄k)
is steeper than that near the zone center (Fta ≠ 0, 62h̄k).
This effect can be described in terms of effective masses:
The dynamics of the particle is equivalent to that of a
particle in free space: mpdkylydt ≠ F with an effective
mass mpsqd given by h̄2ymp ≠ d2E0sqdydq2, which is
in general different from the real mass because of the
interaction with the potential. In the center and at the edge
of the Brillouin zone, the energy band is approximately
parabolic, the effective mass is constant, and kyl evolves
linearly in time. By measuring the slope of kylstad around
ta ≠ 0 (q ≠ 0) and ta ≠ 6tBy2 (q ≠ 6k) in Fig. 3,
we deduce these two effective masses. In Fig. 4(b), we
present their variation with the potential depth U0. For
weak potentials (U0 ! 0), mpsq ≠ 0d tends to the free
atom mass m and mpsq ≠ kd tends to 0. With increasing
potential depth the atoms are more tightly bound and
the effective masses increase in absolute value. For
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Figure 4.5: The number of atom is a function of the atomic momentum with the

time evolution ta. τB is the oscillation period [7].

|F | · As =
∆n

2

As =
∆n

2|F | . (4.8)

Bandwidth ∆n is a function of the intensity of the lattice fields, and the force F

is proportional to the acceleration a. Both of ∆n and F can be tuned with the

parameters of the laser, but there is no relation with a spatial period (d = λ/2)

of the lattice. Therefore, Bloch oscillation is not a classical oscillating motion by

the collision among physical walls. Another important parameter is the oscillation

period τB. According to Eq. 4.4, the period τB could be obtained as:

|F |τB
! =

2π

d

τB =
h

|F |d. (4.9)

From Eqs. 4.7 and 4.9, they show the reason why the Bloch oscillation period τB

of the electrons in the metal could be much longer than the defect scattering period.

Assuming the absolute values of the external force F are similar in “electrons in the

metal” case and “atoms in the optical lattice” case, the spatial period d shows a
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large difference between these two cases. In our optical lattice, d is 390 nm and τB

is about 0.5 ms. In the metal, however, d is about 0.1 to 0.2 nm, so its τB could

be much longer than the defect scattering period (100 ms for the vacancy defect

scattering only in FCC copper [2, 3]).

4.1.2 Quantum Optics Picture

Compared with the moving lattice picture, the quantum optics picture directly ob-

serves the velocity change in the lab frame, rather than in a non-inertial frame. As

shown in Fig. 4.6 [8], similar to Bragg diffraction, atoms gain !(k1 − k2) (≈ 2!k)
momentum kick and the corresponding kinetic energy from two counter-propagating

lattice fields based on momentum conservation and energy conservation.

and we deal with free atoms interacting with two counter-
propagating laser waves having a time-dependent frequency
difference.

A. Bloch oscillations as adiabatic rapid passage
between momentum states

In the absence of spontaneous emission the atoms mo-
mentum can change by units of \(k12k2)'2\k by absorb-
ing a photon from one wave and emitting it into the other in
a stimulated way, as depicted in Fig. 7. Because the atoms
are initially prepared with a momentum spread much smaller
than 2\k and with a kinetic energy near zero, their possible
states after interaction with the light fields are discrete points
up52 j\k ,E54 j2ER& ( j50,1,2,3 . . . ) on the momentum-
energy parabola of the free particle @26# ~cf. Fig. 7!. The gain
in kinetic energy is provided by the frequency difference
between the two laser waves: the atoms are accelerated in the
direction of the beam with the higher frequency by absorbing
photons from it and reemitting low-frequency photons into
the other. The transition up52 j\k ,E54 j2ER&!up
52( j11)\k ,E54( j11)2ER& is resonant for an angular
frequency difference Dv54(2 j11)ER /\ . As we start with
the atoms at rest ( j50) and Dv50, these resonances are
encountered sequentially and a gain of atomic momentum of
2\k can be expected after each change in the frequency
difference of 8ER /\ , as shown in Fig. 8. For a constant
change in the angular frequency difference Dv with the rate
Dv̇ , the time required for this is

t58ER /\Dv̇54ER /\ka52\k/ma , ~14!

which is equal to the Bloch period for the inertial force
ma5mDv̇/2k . Thus the mean atomic velocity increases by
2\k/m during each Bloch period. As shown in Fig. 8~b!, the
Bloch oscillations in the laboratory frame appear as a peri-
odic deviation of the mean velocity around the linear in-
crease in time at . The method of exciting the transition be-
tween two energy levels with a electromagnetic wave of
variable detuning that is scanned through resonance is well
known under the term adiabatic rapid passage ~ARP! @27#.

For properly chosen parameters ~i.e., a scan range that is
greater than the peak Rabi frequency V and slow enough
rate of change of the detuning Dv̇!V2) the transfer be-
tween the states is complete and the method can be used to
efficiently create an inversion between the levels. In our case
a sequence of transfers between momentum states results in a
coherent acceleration of the atoms in the laboratory frame.
Multiple ARP is a powerful method in quantum physics.

For instance, a sequence of ARP has been used to produce
Rydberg atoms in circular states @28#. Multiple ARP, as a
means of momentum transfer between light and atoms, has
already been proposed long ago, but considering the excita-
tion and deexcitation of an internal state of the atom using a
one-photon transition @29#. For instance, they occur in satu-
ration spectroscopy with curved wave fronts @30#. Our sys-
tem has some peculiarities in comparison with previous stud-
ies of ARP: the states are linked by a two-photon transition;
internal states of the atom are not excited, consequently there
is no relaxation or dissipation; the sequence of levels is infi-
nite, so that a large number of successive transfers can be
made. This dynamical case has to be contrasted with the
single two-photon transfer occuring in the recoil-induced
resonances observed in dissipative optical lattices in which
the atomic momentum spread is larger than 2\k @18,31#.
The two-photon Raman process can be characterized by

an effective Rabi frequency

V5V1V2/2D5U0/2\ , ~15!

which is proportional to the depth of the light-shift potential
(V1 ,V2: Rabi frequencies of the two beams, D: detuning
from the atomic resonance line!. The two ARP conditions
then read Dv̇!V2!64ER

2 /\2 and are well fulfilled for the
conditions of our BO experiment in the fundamental energy
band. The second condition, which is equivalent to the weak
binding limit for the periodic potential, allows us to treat the

FIG. 7. Energy-momentum states in the laboratory frame. In the
chirped standing wave, an initial state ug ,p& is only coupled to
ug ,p62 j\k&, where j is an integer, by stimulated two-photon Ra-
man transitions.

FIG. 8. ~a! Population of momentum states up52 j\k& as a
function of time in the chirped standing wave ~numerical simula-
tion!. ~b! Experimental measurement of the mean atomic velocity in
the laboratory frame as a function of time. Parameters are the same
as in Fig. 4.
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Figure 4.6: The atomic momentum states are transferred by the momentum kicks

from two counter-propagating lattice fields. |g, 0⟩ is the initial momentum state on

the fundamental (ground) band; |e, (2j + 1)!k⟩ is the excited state (j is a positive

integer or 0); ∆ and δ are the single- and two-photon detuning of the two-photon

Raman transition, respectively [8].

When the frequency difference between two counter-propagating fields is in-

creased linearly, the atom receives the 2!k momentum kick in each momentum

transfer cycle at some discrete point. As a result, the total momentum change of

the atom is 2j!k, where j is the index number of the transfer cycle. Accompany-

ing the momentum transfer, the kinetic energy of the atom also increases to 4j2ER
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(
(2j!k)2/2M = 4j2ER, where ER is the recoil energy for the lattice field

)
, which

means that the energy 4(2j+1)ER

(
4((j+1)2−j2)ER

)
would be added to the atom

from jth to (j + 1)th cycle. However, the energy increase relies on the two-photon

Raman transition, so the given energy in the cycle might be not enough if the fre-

quency difference between two lattice fields is not tuned to some specific value to

match the energy gap 4(2j+1)ER. In the experimental data of Peik et al. shown in

Fig. 4.7 [8], the energy non-conservation in the process caused that the momentum

transfers in most of the cycles failed (see the plateaus in the figure). The transfer

only worked in the narrow ranges of the frequency difference of two lattice fields

and the theoretical energy gap (see the rising slopes in the figure). The momentum

(velocity) of the atom was therefore increased stepwise rather than linearly. Addi-

tionally, because the energy gap 4(2j + 1)ER was linearly boosted, if the detuning

between two lattice fields was also linearly ramped (∆ω̇ is a constant), the stepwise

rising of the velocity in Fig. 4.7 had a constant period, which totally agreed with the

conclusion of the oscillation period τB in the moving lattice picture (see Eq. 4.9),

because of the constant external force F .

and we deal with free atoms interacting with two counter-
propagating laser waves having a time-dependent frequency
difference.

A. Bloch oscillations as adiabatic rapid passage
between momentum states

In the absence of spontaneous emission the atoms mo-
mentum can change by units of \(k12k2)'2\k by absorb-
ing a photon from one wave and emitting it into the other in
a stimulated way, as depicted in Fig. 7. Because the atoms
are initially prepared with a momentum spread much smaller
than 2\k and with a kinetic energy near zero, their possible
states after interaction with the light fields are discrete points
up52 j\k ,E54 j2ER& ( j50,1,2,3 . . . ) on the momentum-
energy parabola of the free particle @26# ~cf. Fig. 7!. The gain
in kinetic energy is provided by the frequency difference
between the two laser waves: the atoms are accelerated in the
direction of the beam with the higher frequency by absorbing
photons from it and reemitting low-frequency photons into
the other. The transition up52 j\k ,E54 j2ER&!up
52( j11)\k ,E54( j11)2ER& is resonant for an angular
frequency difference Dv54(2 j11)ER /\ . As we start with
the atoms at rest ( j50) and Dv50, these resonances are
encountered sequentially and a gain of atomic momentum of
2\k can be expected after each change in the frequency
difference of 8ER /\ , as shown in Fig. 8. For a constant
change in the angular frequency difference Dv with the rate
Dv̇ , the time required for this is

t58ER /\Dv̇54ER /\ka52\k/ma , ~14!

which is equal to the Bloch period for the inertial force
ma5mDv̇/2k . Thus the mean atomic velocity increases by
2\k/m during each Bloch period. As shown in Fig. 8~b!, the
Bloch oscillations in the laboratory frame appear as a peri-
odic deviation of the mean velocity around the linear in-
crease in time at . The method of exciting the transition be-
tween two energy levels with a electromagnetic wave of
variable detuning that is scanned through resonance is well
known under the term adiabatic rapid passage ~ARP! @27#.

For properly chosen parameters ~i.e., a scan range that is
greater than the peak Rabi frequency V and slow enough
rate of change of the detuning Dv̇!V2) the transfer be-
tween the states is complete and the method can be used to
efficiently create an inversion between the levels. In our case
a sequence of transfers between momentum states results in a
coherent acceleration of the atoms in the laboratory frame.
Multiple ARP is a powerful method in quantum physics.

For instance, a sequence of ARP has been used to produce
Rydberg atoms in circular states @28#. Multiple ARP, as a
means of momentum transfer between light and atoms, has
already been proposed long ago, but considering the excita-
tion and deexcitation of an internal state of the atom using a
one-photon transition @29#. For instance, they occur in satu-
ration spectroscopy with curved wave fronts @30#. Our sys-
tem has some peculiarities in comparison with previous stud-
ies of ARP: the states are linked by a two-photon transition;
internal states of the atom are not excited, consequently there
is no relaxation or dissipation; the sequence of levels is infi-
nite, so that a large number of successive transfers can be
made. This dynamical case has to be contrasted with the
single two-photon transfer occuring in the recoil-induced
resonances observed in dissipative optical lattices in which
the atomic momentum spread is larger than 2\k @18,31#.
The two-photon Raman process can be characterized by

an effective Rabi frequency

V5V1V2/2D5U0/2\ , ~15!

which is proportional to the depth of the light-shift potential
(V1 ,V2: Rabi frequencies of the two beams, D: detuning
from the atomic resonance line!. The two ARP conditions
then read Dv̇!V2!64ER

2 /\2 and are well fulfilled for the
conditions of our BO experiment in the fundamental energy
band. The second condition, which is equivalent to the weak
binding limit for the periodic potential, allows us to treat the

FIG. 7. Energy-momentum states in the laboratory frame. In the
chirped standing wave, an initial state ug ,p& is only coupled to
ug ,p62 j\k&, where j is an integer, by stimulated two-photon Ra-
man transitions.

FIG. 8. ~a! Population of momentum states up52 j\k& as a
function of time in the chirped standing wave ~numerical simula-
tion!. ~b! Experimental measurement of the mean atomic velocity in
the laboratory frame as a function of time. Parameters are the same
as in Fig. 4.

55 2995BLOCH OSCILLATIONS OF ATOMS, ADIABATIC . . .

Figure 4.7: The mean velocity of the atomic ensemble is a function of time during

Bloch oscillation process. The dots and the solid line are the measured data and

the theoretical velocity of the moving lattice, respectively [8].

The experimental result in Fig. 4.7 was measured in the lab frame, but it showed

the same oscillatory behaviour of the atom in an accelerated frame. Assuming an

periodic function v2 as the velocity of an atom in the accelerated frame, and a linear

function v1 as the velocity of the moving lattice in the lab frame, the total velocity

vtotal of the atom in the lab frame can be calculated with v1 + v2. Equations 4.10
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- 4.12 are plotted in Fig. 4.8, where a is the acceleration, defined in Eq. 4.7, Av

is the amplitude of the atom’s velocity in accelerated frame, which is proportional

to the band width ∆n, and ΩB is the angular frequency of Bloch oscillation. Eq.

4.12 qualitatively matches the experimental data in Fig. 4.7, which allows us to

decompose the total velocity function into two parts: v1 for the moving lattice and

v2 for the atom inside of the moving lattice, which shows the same behaviour of

Bloch oscillation as the conclusion in the moving lattice picture.

v1 = at (4.10)

v2 = Av sin
(
ΩB(t+ 0.2π) + 0.5 sin(ΩB(t+ 0.2π))

)
(4.11)

vtotal = v1 + v2. (4.12)

Figure 4.8: The plot of Eq. 4.10 (blue line), 4.11 (red line) and 4.12 (black line)

with a=0.75; Av=0.25; ΩB=5.

As mentioned in Section 4.1.1, the band structure of the lattice is not a simple

sine or cosine function of the quasi-momentum q, and the average velocity ⟨v⟩ could
be calculated by:

⟨v⟩(q) = 1

!
dEn(q)

dq
. (4.13)
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Based on Eq. 4.13, the velocity function is not a sine or cosine periodic function.

Equation 4.11 mimics the velocity curve in Fig. 4.11 [7, 8] to simplify the mathe-

matical function for the qualitative analysis. The real simulation data will be shown

in Section 4.3.1.

4.1.3 Oscillation Efficiency

From Sections 4.1.1 and 4.1.2, we can see that the efficiency of Bloch oscillation

is mainly determined by the two-photon Raman transitions. In the moving lattice

picture, the Raman transition needs to work at each zone boundary (see Fig. 4.4),

if the atom jumps to a higher energy band, it would not follow the motion of the

lattice anymore, and its oscillation behaviour would stop as shown in Fig. 4.9 [9].

In the quantum optics picture, once the atom misses the Raman transition with the

specific frequency difference 4(2j +1)ER, it would miss 2!k momentum kick, which

means its velocity would remian unchanged.

Figure 4.9: The energy band structure of an atom. When the atom reaches the

zone boundary, there are two routes: 1. staying in the fundamental band, which is

Bloch oscillation; 2. jumping to the higher energy band, which is the loss out of the

moving lattice [9].

From the above discussions and Fig. 4.9, the loss to the higher order bands

determines the efficiency of Bloch oscillation. The source of the losses is called

Landau-Zener tunnelling effect. The tunneling rate r is given by [10]:
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r = exp(−
∆E2

ge/4!

| ddt(Ee − Eg)|
), (4.14)

Figure 4.10: The diagram of the parameters ∆Ege and Eg,e in Eq. 4.14. The detail

is explained in the text.

where ∆Ege is the energy gap between the fundamental band and the first higher or-

der band at the crosspoint of two potential wells; Eg,e is the energy of the ground (g)

or the excited (e) state, which is a function of time because the atom is accelerated,

as shown in Fig. 4.10. Equation 4.14 shows the tunnelling rate increases when the

energy gap at the crosspoint is smaller, the slopes (absolute values) of the potential

curves are larger, or the atomic acceleration (the external force F ) is higher. The

energy gap and the curve slope depend on the total potential depth U0. So Eq. 4.14

can be converted to another form, as shown in Eq. 4.15 for the analysis of Bloch

oscillation [8, 9]:

r = exp(−ac
a
) (4.15)

ac
a

=
πΩ2

2∆ω̇
∝ (

U0

ER
)2 (4.16)

Ω =
Ω1Ω2

2∆
=

U0

2! , (4.17)

where a and ac are the acceleration in Eq. 4.7 and the critical acceleration, respec-

tively, Ω and Ω1,2 are the Rabi frequencies of the Raman transition and the single

lattice beam 1 or 2 in Fig. 4.2, respectively, and ∆ is the single-photon detuning,

the same as that in Fig. 4.6, and U0 is the potential depth of U(z) in Eq. 4.1.
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Landau-Zener tunnelling effect describes the probability of the non-adiabatic trans-

fer of the population from one energy band to anther one. Here, we would discuss

two tunable parameters: the potential depth U0 and the external force F , to improve

the efficiency of Bloch oscillation.

Based on the Fourier transform, a higher potential depth corresponds to a nar-

rower band width ∆n and a smaller velocity range in k-space as shown in the ex-

perimental data of Dahan et al. in Fig. 4.11 [7, 8]. A higher potential depth could

efficiently reduce the tunnelling rate to higher energy bands, because the band gap

becomes larger and the atomic velocity becomes lower, as shown in Eqs. 4.14 - 4.16.

However, Landau-Zener formula makes some approximation in the derivation, so it

is valid in weak-binding limit only (U0 ≤ 20ER, where ER is the recoil energy, de-

fined in Eq. 1.11). The efficiency does not change after the potential depth is higher

than 20ER, so the magnitude of the external force F dominates in tight-binding

limit.

The efficiency increased by a deep potential well looks helpful for the experiment,

however, the narrow band width and velocity range would cause a small oscillation

amplitude as shown in Eq. 4.8. Therefore, it is efficient to push the atomic en-

semble in some direction, but also increases the difficulty to observe the oscillation

behaviour, so it is not suitable for our experiment because we tend to measure the

recoil velocity vR. The same argument can be also explained in the quantum optics

picture, where the total velocity simulation of Fig. 4.8 would show smaller deviations

from the straight line of the lattice velocity when the lattice field is more intense.

The reason is that, when the lattice field intensity increases, the scattering rates

of the off-resonant Raman transitions also increase, so the total velocity would be

closer to a linear function of time. As a result, the oscillation behaviour is difficult

to observe in this configuration.

The external force of Bloch oscillation is proportional to the acceleration a of the

moving lattice and the frequency ramping rate ∆ω̇. A stronger force could make a

higher probability to drive atoms jump to higher energy band, consistent with the

varied tendencies in Eqs. 4.14 and 4.15. Because the external force F is inversely

proportional to the oscillation period τB as shown in Eq. 4.9, the experimental data

and the simulation of Cladé et al. in Fig. 4.12 showed the efficiency as the function

of the oscillation period [9].
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Figure 4.11: Left : the band structure of Cs atoms (in unit of the recoil energy ER)

as a function of the quasi-momentum; Right : the atomic mean velocity (in unit of

the recoil velocity vR) as a function of time-variable quasi-momentum Fta for three

different values of the potential depth: (a) U0 = 1.4 ER; (b) U0 = 2.3 ER; (c) U0 =

4.4 ER [7, 8].

CLADÉ, ANDIA, AND GUELLATI-KHÉLIFA PHYSICAL REVIEW A 95, 063604 (2017)

FIG. 9. Comparison of the efficiency for three initial states: the
usual Bloch state, the Wannier-Bloch state, and the shifted Bloch
state. This graph clearly shows that in theory the shifted Bloch state
reaches an efficiency very close to the Wannier-Bloch state.

amplitude of the shift is plotted in Fig. 10. This optimal
shift obtained using numerical simulation is close to the one
calculated with Eq. (19).

VI. EXPERIMENT

The experimental setup that we use has been described in
[6]. A cloud of 87Rb atoms is prepared in the F = 2,mF = 0
state. To implement the Bloch oscillations, we need to generate
a moving optical lattice with a controlled velocity. This
requires a high-power laser source: we use the frequency
doubling of an amplified seed laser at 1560 nm in a Periodically
Poled Lithium Niobate (PPLN) crystal [16]. The Bloch beam
is split into two paths, each of which passes through a

FIG. 10. Optimal shift of the Bloch state as a function of the lattice
depth. The thick solid line represents the numerical simulation, and
the thin solid line shows the analytical model based on the harmonic
oscillator.

FIG. 11. Schematic of the DDS generator in the FPGA: the
sequencer produces a list of values for the phase φ, the frequency
f , the frequency sweep ḟ , the amplitude A, and the amplitude sweep
Ȧ. Those values are sent to the DDS, which creates the sine wave
accordingly.

double-pass acousto-optic modulator (AOM). The amplitude,
velocity, and phase of the lattice are directly controlled by the
amplitude, frequency, and phase of the rf signals sent to the
AOMs.

In order to control those parameters, we have built a
custom frequency generator based on an Field-programmable
gate array (FPGA) using a Red Pitaya board. The maximal
frequency that can be generated using this board is limited
to 40 MHz; therefore, we mixed the output of the board to
a synthesizer in order to be at the nominal frequency of the
AOMs (80 MHz). Inside the FPGA, we have implemented a
direct digital synthesizer (DDS). The phase, frequency, and
amplitude, as well as linear frequency sweep (acceleration)
and linear amplitude sweep, are implemented in the DDS. We
have also implemented a sequencer that drives the DDS and
allows us to perform a complete Bloch pulse (Fig. 11).

The measurement of the efficiency of Bloch oscillations
is realized as follows: first, a counterpropagating Raman
transition selects a velocity class in F = 1,mF = 0; then a
blow-away beam removes any remaining atoms in the F = 2
state. The sequence of N Bloch oscillations is applied, and then

   (   )

FIG. 12. Bloch oscillation efficiency as a function of the Bloch
period TB (inverse of the acceleration) for 20 Bloch oscillations
(dots). This plot shows the “Landau-Zener” transition. Due to
the inhomogeneity of the laser intensity, we do not observe the
oscillations predicted by the simulation. The solid line is a fit for
which we adjusted the potential and inhomogeneity.

063604-6

Figure 4.12: The efficiency of 20 Bloch oscillations as a function of the oscillation

period (TB in Reference [9]) The dots and the solid line are experimental data and

the simulation, respectively; the potential depth U0 is 40ER [9].
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Bloch oscillation is a kind of adiabatic transitions, so a weaker force could help

achieve a higher efficiency of this process. If the force is weak enough not to in-

duce the internal transitions among energy bands, it needs to satisfy the adiabatic

criterion:

|⟨un′,q|
d

dt
|un,q⟩| ≪

|En′(q)− En(q)|
! (n′ ̸= n), (4.18)

where un,q is the wavepacket function of Bloch state, as defined in Eq. 4.2. For the

case U0 ≤ 10ER, Eq. 4.18 shows the condition |Mad| ≪ (π/8)U2
0/ER (d = λ/2,

which is the spatial period of the lattice), which is easier to be satisfied in a deeper

potential well and a small external force [8]. The adiabaticity could be improved

with a reduced force as shown in Fig. 4.12, but it is not an ideal strategy to choose a

long oscillation period in the experiment due to the system stability and coherence

concerns. Therefore, there are two more ways to improve the adiabaticity, one is

to tune the frequency ramping rates adabatically, and the other is to tune relative

phases of two lattice fields in the beginning and ending stages of the frequency

ramping, both of which improvement methods are discussed in Reference [9]. In

this experiment, we optimize the potential depth U0 and the acceleration a to 7ER

and 30 m/s2, respectively, which satisfy the adiabatic criterion in Eq. 4.18.

4.2 Experimental Setup

4.2.1 Optical Setup

Figure 4.13 shows the optical setup for EIT measurement with Bloch oscillation.

Because the precooling of Raman sideband cooling is necessary to achieve efficient

Bloch oscillation, the optical setup was built on the foundation of Raman sideband

cooling alignment as described in Section 3.2.2. Other optical components for the

1D optical lattice of Bloch oscillation and EIT phase measurement were then added.

The lattice field for Bloch oscillation shared the same light source with the lattice

field for Raman sideband cooling. The setup for frequency ramping of the lattice

field for Bloch oscillation is shown in Fig. 4.14. The lattice beam was separated

into two parts, both of which double-passed two independent AOMs with driving

frequency f1 and f2, and then returned to the original optical paths and were coupled
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into an optical fibre. Frequency f1 was ramped from 80 MHz, and frequency f2 was

fixed at 80 MHz.

Figure 4.13: The optical setup for EIT measurement for Bloch oscillation experiment,

where RSC and BO are Raman sideband cooling and Bloch oscillation, respectively;

PBS is the polarizing beam splitter; Dichroic mirrors (785 nm RazorEdge Dichroic

laser beamsplitter from Semrock), with a longpass edge at 785 nm; HWP1,2 are the

half-waveplates. In our frequency tuning setup of the BO lattice fields in Fig. 4.14,

the frequencies of two orthogonally-polarized BO lattice fields are tuned by the RF

inputs of two AOMs: one can be ramped, and the other is fixed. Therefore, the

direction of Bloch oscillation can be switched by changing the angle of HWP1, and

HWP2 is used to tune and keep the polarization of one BO lattice field the same as

another one.

Continuing from the output of the optical fibre, the lattice field was separated

into two parts to build a 1D optical lattice with the potential depth U0 (7ER),

where the polarization of two fields should be the same, and optimized with two
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Figure 4.14: The frequency tuning setup of the lattice fields for Bloch oscillation,

where HWP is the half-waveplate; QWP is the quarter-waveplate; PBS is the po-

larizing beam splitter; AOM is acoustic optical modulator; RF f1,2 is the input

frequency of AOM for frequency tuning.

HWPs (half-waveplates) in the setup. The probe and control fields still counter-

propagated with each other (!185 ) such as the alignment described in Section

2.2.2, but the interaction plane was changed from the vertical plane (yOz) to the

horizontal plane (xOy). The frequencies, the heterodyne detection setup, and the

beam size of the probe and control fields have already been discussed in Section

2.2.2. The atomic transitions used in the probe and control fields were changed to

D1 |F = 2⟩ → |F ′ = 3⟩ and D1 |F = 3⟩ → |F ′ = 3⟩, respectively. Changing the

frequency of the probe and control fields to D1 line provided a possibility to align

the lattice beams and the probe beam with a dichroic mirror (see Fig. 4.13).

4.2.2 Time Sequence

Figure 4.15 shows the time sequence of this experiment, including four parts:

1. MOT: This stage prepared a cold atomic ensemble with the cooling field,

repump field and the quadratic magnetic field, which are discussed in Sections 2.2.1

and 2.2.3.

2. Raman sideband cooling: This stage was the precooling phase for loading

atoms into the 1D optical lattice of Bloch oscillation, as discussed in Section 3.2.3.

The total duration of z-axis magnetic field was reduced to 8 ms.
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Figure 4.15: The time sequence of the experiments: MOT, Raman sideband cooling,

Bloch oscillation and EIT phase measurement.

3. Bloch oscillation: The pulse duration of the 1D lattice was 4 - 8 ms, where

the rising and falling time were 0.8 and 0.1 ms, respectively. In Eq. 4.19 (bi and

bf were 6 and 50, respectively) and Fig. 4.16, the rising time was the same as that

of Raman sideband cooling to avoid the internal transitions; the falling time was

close to 0 (0.1 ms) to keep the atomic velocity after Bloch oscillation. The linear

frequency ramping started at 1 ms after introducing the lattice field, and lasted a

few ms with the optimized acceleration a 30 m/s2 (75 MHz/s).

I = tanh(bi(t− 0.4)) + tanh(−bf (t− 4)). (4.19)

4. EIT phase measurement: This part was the same as in Section 2.2.3. To

measure the atomic velocity at different moments during the acceleration of Bloch

oscillation, the delay generator DG535 (DG535 - Low jitter delay generator from

SRS) was used to shift the timing of the control and the probe pulses. Additionally,

we added an extra control field pulse with 0.5 ms duration for the optical pumping

from |F = 3⟩ to |F = 2⟩. This pulse was introduced before Bloch oscillation started

with two reasons. One is to use full power of the control field to pump the populations

to |F = 2⟩, because most population were on |F = 3,mF = 3⟩ state after Raman

sideband cooling process. The other is to avoid the extra momentum kicks of the

optical pumping during the acceleration of Bloch oscillation. In this experiment, we

tended to measure the recoil velocity caused by the accelerating lattice, so the extra

momentum kicks from the optical pumping could cause some systematic errors.
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Figure 4.16: The time profile of the 4 ms lattice field pulse for Bloch oscillation.

4.3 Data and Discussion

Figure 4.17 shows the displacement of the atomic ensemble at different flight time

after the same Bloch oscillation process, where the ramping rate was 75 MHz/s (30

m/s2) and the ramping time was fixed at 3 ms. Only part of atoms were accelerated

by Bloch oscillation, which the highest ratio was 55% in this experiment. There were

two reasons for this low transfer ratio. Firstly, the temperature of the atomic ensem-

ble was not low enough with respect to the recoil temperature, so there were some

atoms not following the motion of the lattice. Moreover, the oscillation efficiency

mentioned in Section 4.1.3 might not be 100%. Referring to Eqs. 4.15 - 4.17, the

Landau-Zener tunnelling probability r in this case was e−24 = 3.8×10−11 and the os-

cillation period τB was 411 µs (calculated from Eq. 4.9), so the oscillation efficiency

during the ramping time 3 ms was (1 − 3.8 × 10−11)3000/411 = 0.9999999997 ≈ 1,

which means the atomic temperature dominated the final oscillation efficiency in

this case. Additionally, in Fig. 4.17 we can also see that the fluorescent images

become dimmer and dimmer with the longer flight time. This was due to the escape

of atoms from the dipole trap on z-axis, where our Raman sideband cooling was on

xy plane only.

From the experiment in Chapter 2 to that in this chapter, we added some compo-

nents for Raman sideband cooling and Bloch oscillation, both of which caused a few
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Figure 4.17: The images of the atomic ensembles after Bloch oscillation, where the

acceleration a is 30 m/s2; the ramping time is 3 ms; the waiting time for imaging

after frequency ramping is: (a) 15 ms; (b) 20 ms; (c) 25 ms; (d) 30 ms.

loss of the atoms. In addition, sub-Doppler cooling also needed to be implemented

to pre-cool atoms for the following Raman sideband cooling, which could cause a

huge loss of atoms as well. As mentioned above, the reduction of optical depth (OD)

was inevitable, which shrank from 36 to 1. This degradation means the phase shift

in the EIT measurement would roughly shrink to 1/36 of the magnitude shown in

Chapter 2, in addition, our target was to measure the recoil velocity, which meant

the data precision needed to be improved 2 orders of magnitude.

To achieve a better precision, we built PID system to stabilize the control field

power (see Appendix A.2) and improved the algorithm of the phase shift calculations

(see Section 4.3.2). We did a test of the delay time with different detunings of the

probe field without Bloch oscillation as shown in Fig. 4.18. Based on Eq. 4.20 [11]

(where Γ31 is the spontaneous decay rate of |3⟩ → |1⟩ transition, Ωc is the Rabi

frequency of the control field, and δ is the two-photon detuning), the delay time

was proportional to the refractive index due to no light dragging effect under this

circumstance. The resolution (precision) was 0.005 ns (0.7 mm/s), which was about

1 order of magnitude smaller than the performance shown in Chapter 2 (0.03 ns).
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Re[χ(1)] ∝ Γ31

Ω2
c

δ +O(δ2). (4.20)
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Figure 4.18: The delay time as a function of the detuning of the probe field, where

the control field power is 2 mW.

The phase measurement for a different ramping time of Bloch oscillation is shown

in Fig. 4.19. The control field power was 0.6 mW, corresponding to 0.2 µs group

delay tg in EIT process. The pulse widths of the control and the probe fields were

1 ms square pulse and 5 µs (FWHM) Gaussian pulse, respectively. The frequencies

of the control and the probe fields were both resonant with |2⟩ ↔ |3⟩ and |1⟩ ↔ |3⟩,
respectively. The ramping rate was 75 MHz/s (30 m/s2), and the potential depth

U0 was 7ER. The acquisition time for each data point was 75 s on average 25

times. From Fig. 4.19, we can see the phase shift in the beginning of frequency

ramping increased 2 times faster than other data points, which might be caused by

the non-adiabaticity of the external force (see Section 4.1.3). The direction of Bloch

oscillation can be switched by tuning the angles of the HWP shown in Fig. 4.13.

Both of the phase shifts with Bloch oscillation in two directions had the same offsets

from the phase shifts caused by EIT effect, the partial atoms not accelerated by

Bloch oscillation and the optical path difference between the signal beam and the

reference beam (see the signal and the reference beam alignment in Section 2.2.2).
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To take out these offsets, we took the difference between the phase shifts in two

oscillating directions and plotted them in Fig. 4.20.
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Figure 4.19: The delay time as a function of the ramping time, where the red squares

are the data of co-propagated Bloch oscillation and the probe field; the black circles

are the data of counter-propagated Bloch oscillation and the probe field.

Figure 4.20 shows the velocity of the atomic ensemble increasing monotonically

during Bloch oscillation, which is not stepwise like Fig. 4.7. To improve this result,

we had two strategies: One was to extend the data acquisition time to 30 minutes

per data point, as shown in Fig. 4.21, which achieved the precision 0.52 ps (0.00052

ns), one more order of magnitude improvement. The other was to use the theoretical

simulation to search for an optimized potential depth U0 and the cooling temperature

TB for Bloch oscillation.

4.3.1 Theoretical Simulation

The energy of a particle in a 1D periodic potential can be described by the following

Schrodinger equation:

ĤMΨn(z) = [− !2
2M

∇2
z + Û(z)]Ψn(z) = EnΨn(z), (4.21)
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where M is the mass of the particle; n is the quantum number of the energy band;

Û(z) is a periodic function of the potential well. To obtain the energy band structure,

we convert Eq. 4.21 to the form in k-space:

ĤMΨn(p) = [
(p̂+ n · 2!k)2

2M
+

∫
dp′Û(p− p′)]Ψn(p) = En(p)Ψn(p), (4.22)

where k is the wavevector of the lattice field; 2k is the lattice base vector of 1D

lattice, which is explained in Section 3.1.1.2. Considering the fundamental, first-

excited and second-excited band, the Hamiltonian in k-space with n ∈ [−2, 2] can

be expressed in a matrix form for the numerical calculation as follows:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p−4!k)2
2M

(p−2!k)2
2M

(p)2

2M
(p+2!k)2

2M
(p+4!k)2

2M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0

2
U0

4

U0

4
U0

2
U0

4

U0

4
U0

2
U0

4

U0

4
U0

2
U0

4

U0

4
U0

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.23)

where Up is assumed to be a constant U0 in the numerical integration under the weak-

binding limit (U0 < 20ER). Spanning p to the first Brillouin zone (−!k to +!k),
the band structure of the first three bands could be obtained by the eigenvalue

calculation of Eq. 4.23. The results of the first two bands are shown in Fig. 4.22,

and we can see the band structure of U0 = 7ER case has a higher offset potential

energy, a larger band gap, and a flatter energy curve (narrower bandwidth) than

U0 = 2.3ER case, which is consistent with the discussion in Section 4.1.3.

Referring to Eq. 4.13, the average velocity ⟨v⟩(p) of the particle in the funda-

mental band can be calculated by p derivative of the energy structure, as shown in

Fig. 4.23. In the figure, we can see the velocity oscillation in U0 = 2.3ER case is

much larger than that in U0 = 7ER case, so it is more difficult to observe Bloch

oscillation with higher potential depth.

For the total velocity vtotal during Bloch oscillation, in this case, the momentum

p is a function of time and the changing average velocity ⟨v⟩ of the particles in the

lattice becomes a functional of p(t). Combining ⟨v⟩[p(t)] and the additional velocity

at given by the accelerating lattice, the total velocity vtotal can be obtained as:
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Figure 4.22: The band structure of the fundamental and the first excited bands.

Left : U0 is 7ER; Right : U0 is 2.3ER.
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p(t) = p(0) +Mat (4.24)

vtotal =
exp(− E0(p)/kBT)

Z
·
(
⟨v⟩[p(t)] + at

)
. (4.25)
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Figure 4.24: The simulation of the total velocity vtotal as a function of the ramping

time, where the accelerations are both 30 m/s2. Left : U0 is 7ER, TB is 0 µK; Right :

U0 is 2.3ER, TB is 0 µK.

Figure 4.24 shows the simulation of Eq. 4.25 with two potential depths U0:

7ER and 2.3ER. To simulate the real temperature of our atomic ensemble before

Bloch oscillation, the Boltzmann factor exp(−E0(p)/kBT )/Z is added into Eq. 4.25,

where E0(p) is the energy of the fundamental band (n=0), and the simulation result

is shown in Fig. 4.25.

From Figs. 4.24 and 4.25, we can see that it is impossible to observe the stepwise

increasing of the velocities under our current configuration (U0 is 7ER, TB is 2 µK).

The potential depth U0 should be lower than 3ER to avoid a flat curve of the energy

structure. However, a shallower trap depth would cause a lower oscillation efficiency

(see Eqs. 4.15 - 4.17). For example, when U0 is 3ER, tunnelling probability r

is exp(−4.4), so the oscillation efficiencies after 3 ms and 7 ms ramping time are

91% and 81%, both of which are lower than those in U0 = 7ER case, but they are

acceptible, so reducing the lattice potential is a good solution. The real temperature

TB in our experiment was 1.5 - 2 µK, which was caused by the heating effect of the

optical pumping before Bloch oscillation. Velocity selection (Raman cooling) [12, 13]
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Figure 4.25: The simulation of the total velocity vtotal as a function of the ramping

time, where the accelerations are both 30 m/s2. Left : U0 is 7ER, TB is 2 µK; Right :

U0 is 2.3ER, TB is 2 µK.

is a possible solution to select the cold atoms in some specific momentum range,

which can achieve a high efficiency of Bloch oscillation. We plan to implement the

velocity selection to replace the optical pumping in the near future.

4.3.2 Phase Measurement Algorithm

In our phase measurement, we acquired two waveform (signal and reference) data

from the oscilloscope and calculated their phase difference. Fig.4.26 is the user

interface of the acquisition program, which includes three acquisition modules: left,

center, and right part. In Chapter 2, we used the left part to compare the zero

points of two waveforms to calculate the phase difference. This method picked the

data near the zero points only, which was usually less than 20 data points in a

single shot. This was a huge waste of the information we obtained (the oscilloscope

acquired 2500 points each cycle). To utilise the data points more efficiently and

improve the measurement precision, we implemented the ellipse fitting to calculate

the phase shifts with all data points. In our demonstration, there were two stages

of the ellipse fitting:

1. Construction of the Lissajous curve with the acquired data: As shown in

Eq. 4.26, the two waveforms were represented by two cosine functions with different

amplitudes (A1 and A2), different offsets (B1 and B2) and a phase difference (∆θ).

Here we assumed the frequencies ω of two waveforms were the same (70 MHz in this
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Figure 4.26: The user interface of the acquisition LabVIEW program. This program

provides two methods to calculate the phase difference: waveform camparison and

ellipse fitting. The mean value and the standard error are calculated in each acqui-

sition cycle, and calculated again after a few cycles (20 times in Chapter 2, 25 times

in Chapter 4) to obtain one final data point on the plot. The right part integrates

the pulse delay control with the delay generator DG535 to scan the phase shifts at

different timings.
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experiment), and eliminated the time variable t and ω:

⎧
⎪⎨

⎪⎩

x = A1 cos(ωt+ 0) + B1

y = A2 cos(ωt+ ∆θ) + B2

(4.26)

t =
1

ω
cos−1(

x− B1

A1
) =

1

ω

[
cos−1(

y − B2

A2
)− ∆θ

]
. (4.27)

Equation 4.27 can be rearranged to:

x− B1

A1
= cos

(
cos−1(

y − B2

A2
)− ∆θ

)

=
y − B2

A2
cos∆θ + sin

(
cos−1(

y − B2

A2
)
)
sin∆θ (4.28)

⇒ x− B1

A1
− y − B2

A2
cos∆θ =

√
1− (

y − B2

A2
)2sin∆θ (4.29)

⇒ (
x− B1

A1
)2 + (

y − B2

A2
)2 − 2(

x− B1

A1
)(
y − B2

A2
)cos∆θ = sin2∆θ (4.30)

⇒ 1

A2
1

x2 +
1

A2
2

y2 − 2

A1A2
cos∆θxy + · · · , (4.31)

Comparing Eq.4.31 with the equation of the conic section: ax2 + bxy + cy2 + dx +

ey + f = 0, if we could obtain the parameters in the conic section function, the

phase difference ∆θ could be calculated with:

∆θ = cos−1(
b

−2
√
ac

). (4.32)

2. Direct least square ellipse fitting: Normally, the curve fitting requires some

initial guess of the fitting parameters. It is often necessary to manually tune the

parameters during the fitting process to avoid the local minimum as the fitting

result (taking least square method as an example, it tends to find the minimum

of the square-value summation of the deviation between experimental data and the

theoretical model). Here, we used another fitting method to automate this process.

“Direct least square ellipse fitting” algorithm was developed by Fitzgibbon et al.

in 1996 [14], which featured the conversion from a curve fitting problem (specifically

for ellipse curves only) to an eigenvalue / eigenvector calculation. Based on the

general equation of the conic section (ax2+ bxy+ cy2+ dx+ ey+ f = 0), we set the

fitting error as F (α, D), where the definitions of α and D were:
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α =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x21 x1y1 y21 x1 y1 1

x22 x2y2 y22 x2 y2 1

x23 x3y3 y23 x3 y3 1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.33)

where α was a vector composed of the fitting parameters, and D was a matrix with

the calculated values from (xi, yi) data (i was the index of the data point). Using

the least square method, we needed to find the minimum value of F (α, D)2:

F (α, D)2 = (Dα)T (Dα). (4.34)

For the ellipse fitting, we set an extra constraint C matrix:

4ac− b2 > 0 (4.35)

αTCα− p = 0 (p > 0) (4.36)

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.37)

Introducing Lagrange multiplier λ and the constraint C, the formula of error square

became:

F (α, D)′2 = (Dα)T (Dα)− λ(αTCα− p). (4.38)

To obtain the minimum value of Eq.4.38, we took its α derivative, and set it as 0:

2DTDα− 2λCα = 0. (4.39)

We set DTD = S. Considering the determinant of C must be 0 (so there is no

inverse matrix of C), Equation 4.39 can be rearranged to:
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S−1Cα =
1

λ
α. (4.40)

As shown in Eq. 4.40, the curve fitting problem is converted to an eigenvalue /

eigenvector calculation. However, there are six pairs of the eigenvalues and their

corresponding eigenvectors, denoted by [1/λi, αi], so choosing a correct solution is

crucial. In addition, the scalings of the eigenvectors cause the solution of eigenvectors

not unique, so we assumed the eigenvector solution αi was µυi. Using the relation

in Eq. 4.39 and timing αT in the front of each side of Eq. 4.39, we wrote equations

as follows:

αTSα = λαTCα = pλ (4.41)

µ =

√
pλ

υTSυ
, (4.42)

where p and υTSυ are always positive, so µ exists only if λ is positive. Therefore,

we chose a pair of the eigenvector with a positive eigenvalue (1/λ) as the fitting

solution, and it was the only pair under the ellipse constraint C. The unknown

value µ does not make a difference to our result, because it is eliminated in the ∆θ

calculation (see Eq. 4.32).

An advantage of the ellipse fitting is able to use the information of all data points,

and it requires only 6 points to define an ellipse (see Fig.4.27). Because of the six

unknown parameters in α, we separated the data (2500 pionts) to 2500/6 fitting

cycles to enhance the precision. The drawback of the ellipse fitting is its fitting

range, which cannot tell ∆θ from 2π − ∆θ, so ∆θ needs to be in the range [0, π],

which is the reason why we tuned the phase difference with signal cables in different

lengths to fit our measurement data in this range.
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Chapter 5

Conclusion

In this thesis, a new experimental method of EIT-enhanced light dragging effect for

the motion quantum sensing is introduced. To prove the feasibility and performance

of this new technique, two experiments were demonstrated.

The light dragging effect was performed by the interaction between the light field

and a moving atomic ensemble in free space. The light dragging effect induced a

phase shift of light, which was proportional to the velocity of the moving medium.

The chosen medium was a 85Rb cold atomic ensemble. The centre-of-mass velocity

of the ensemble was induced by the resonant scattering of the light fields. EIT

effect was used to enhance the dragging coefficient Fd with a high dispersion of

the refractive index and reduce the absorption of the probe field intensity. A large

dragging coefficient Fd (= 1.67×105), two orders of magnitude larger than the 85Rb

hot vapour [1], and five orders of magnitude larger than the first light dragging

effect [2, 3] was achieved. The sensitivity of the velocity was 1 mm/s, two orders of

magnitude smaller than thermal velocity width (Doppler broadening) of the atomic

ensemble (about 100 mm/s).

Also, a degenerate Raman sideband cooling of 85Rb atoms was demonstrated.

With a 2D lattice produced by three lattice fields, an external magnetic field, and an

optical pumping field, the temperature of the atomic ensemble achieved near recoil

temperature of 357 nK. Moreover, the measurements of atoms’ motion in a driven

periodic potential were conducted using the atomic ensemble trapped in a 1D optical

lattice and accelerated by Bloch oscillation. The phase shift measurements showed

the linear-like relation to the accelerating time with the data precision 0.00036 rad

(0.005 ns, 0.7 mm/s), but did not show the stepwise trend with the oscillation period
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τB. With the help of the theoretical simulation, we are aware that the potential

depth and the atom’s temperature are too high to observe the stepwise motion in

our phase measurement. In the future, we will reduce the lattice field intensity and

implement the velocity selection technique to approach the precision measurement

of the recoil velocity of the atoms during Bloch oscillation. Besides, the sensitivity

of the phase shift measurements can also be improved by using larger lattice beam

waist to load more atoms into the lattice, since the sensitivity of the phase shift

measurement is proportional to the square root of OD.
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Appendix A

Circuit Design

A.1 Magnetic Field Switching

In addition to the MOT coil to produce a quadratic magnetic field with a pair of anti-

Helmholtz coil, we also set three pairs of Helmholtz coils to generate the magnetic

fields on x, y, and z axes to compensate the ambient magnetic field, and provide

a magnetic field along a specific direction during the experiment. To control the

magnetic field, we build a current controlling box with a voltage-controlled current

circuit as shown in Fig. A.1, and connect it with a constant voltage Vcc as the power

supply to generate a variable current.

In Fig. A.1, the input controllable voltage Vs is the sum of two voltages. One

is from the trimmer used to set an offset current (magnetic field) to compensate

the ambient magnetic field. The other is from the trigger pulse regulated by an

AND-gate and a constant voltage of the power supply. This is used to switch the

current. The input voltage Vs is converted to a tunable current io by a n-channel

MOSFET (NMOS).

MOSFET has a multi-layer structure made with some semiconductor materials,

whose performance is sensitive to the temperature and humidity in the surroundings.

To stabilize the current, a v-i (voltage to current) feedback loop is introduced into

the circuit. The basic model of the v-i feedback loop is shown in Fig. A.2 [1]. The

input voltage Vs is adjusted by the feedback voltage Vf to the real input voltage Vi,

which is amplified by OP amp (operational amplifier) and MOSFET to the current

AVi. Because the output current io is short to the ground in the ideal case, io would

116



Figure A.1: The circuit design of the voltage-controlled current. The components

connected before Vs are to manipulate a tunable input voltage Vs, which corresponds

to the output current io. The input voltage is amplified and converted to the out

current, and the current flows into a feedback loop, which could stabilize the final

output current io. Rf is the resistor for the feedback gain; Rg resistor, Cm capacitor

and Do diode are designed to ease the high frequency noise.

Figure A.2: The basic model of the feedback loop, where R1,2 are general load

resistors; Vi and Vf are the real input voltage and the feedback voltage, respectively;

A and β are the gains in the main circuit (from OP amp and MOSFET) and the

feedback circuit, respectively.
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be equal to AVi. To make a feedback voltage, the feedback gain β converts the

output current to the feedback voltage βi0. The above process can be summarized

to three equations shown as Eq. A.1:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Vi = Vs − Vf

io = AVi

Vf = βio

(A.1)

⇒ io
Vs

=
A

1 + βA
, (A.2)

in our case, the gain of OP amp (OP27) is 1.8 × 106, and the transconductance of

NMOS (IRF630) is about 0.09 A/V around 400 mA, so the total gain A is much

larger than 1. The feedback gain β can be calculated with Eq. A.3:

β =
Vf

io

∣∣∣∣
open

, (A.3)

where the term “open” in Eq. A.3 means that input port is supposed to be open

under this condition (Vs = 0), therefore, β is equal to Rf , where there is no current

flowing through the 5 KΩ resistor (see Fig. A.1). From Eq. A.2, we can see the

output current io is proportional to 1/Rf when A is large enough. Rf is a resistor

for high power (80 W) use, which is insensitive to the surrounding changes, so the

output current can be very stable. In our experience, there is only 1 mA drift under

the condition with 5 C deviation.

MOSFET is a good current source, but it has an issue called the parasitic os-

cillation [2], which is proportional to time derivative of the input voltage (dVs/dt).

This issue becomes non-negligible when the input voltage increases sharply, such as

a square trigger pulse (see Fig. A.3). So, Rg, Cm and Do are designed to ease and

block the high frequency noise, and finally the oscillation is not observable.

A.2 PID Stabilization System

To acquire the data with higher precision, the stability of the experimental setup

needs to be taken with great care. In our experiment, the data of the phase shifts

are proportional to the light frequency and the dragging coefficient as shown in Eq.
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Figure A.3: The parasitic oscillation shows up in the beginning and ending of the

signal pulse, where the yellow line is the voltage signal converted from the output

current; the blue line is the trigger pulse.

2.6. The light frequency could be well-controlled with the RF synthesizer, but the

dragging coefficient is proportional to the dispersion of the refractive index ∂n/∂ω,

which is shown as the central slope in Fig. 1.18 (Re[χ] function). The dispersion of

the refractive index is a function of the control field power as Eq. 2.11 shows, and

there is 10% power fluctuation of the probe and control fields. Therefore, a power

stabilization setup could improve the precision of our phase measurement.

Figure A.4 shows the system to stabilize the control field power with the com-

bination of AOM and PID (proportional–integral–derivative) controller. We first

set a reference level with the wheel of the potentometer on the PID box, and then

compare it with the signal level measured by the detector (input from “Detect In”

port). Also, the PID box sends out a feedback voltage from “Modulation Out” port

to the RF synthesizer (Agile RF synthesizer ARF from MOGLabs) to modulate the

RF output power corresponding to our PID feedback voltage. After a few cycles,

the control field power would be the reference level we set.

PID circuit is the key role in this feedback system, which is shown in Fig. A.6.

PID circuit needs to work with the modulation function of the external equipment,
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Figure A.4: The power stabilization system of the control field, where the compo-

nents and their functionalities are explained in the text.

Figure A.5: The input and output (IO) ports of the homemade PID circuit box,

where the switch is used to permanently turn on or off the box; ±15V are the power

supplies of the OP amp (operational amplifier); the others are explained in the text.
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and send out the error signal (the difference between the measured signal and refer-

ence level set by the user) to compensate the fluctuation of the measured signal. In

our experiment, we mainly focus on the power fluctuation, so the PID circuit works

with the amplitude modulation of the RF synthesizer. The way which PID deals

with the error is to produce a negative gain to respond the change of the signal,

which includes three parts: 1. the proportional gain (P-gain GP ), responding to the

current error; 2. the integral gain (I-gain GI), representing the past error from its

charged memory (capacitance); 3. the derivative gain (D-gain GD), predicting the

future error with the time derivative of the error to realize the instant fluctuation

of the signal. Based on the parameters of our PID circuit, the error compensation

Errc(t) as a function of the error Err(t) is shown as below [3]:

Errc(t) =−GP · Err(t)−GI

t∫

0

Err(t)dt−GD
d

dt
Err(t)

=− (Trimmer1)

(2.8KΩ)
Err(t)

− 1

(Trimmer2)(4.7nF )

t∫

0

Err(t)dt

− (Trimmer3)(4.7nF )
d

dt
Err(t). (A.4)

Usually P-gain is the main power of feedback gains, but it cannot compensate

the error signal to 0. Therefore, the assistance of I-gain is necessary. D-gain can

respond to the fast fluctuation, but a large D-gain might cause the signal to oscillate.

We set three trimmers to optimize their resistance values for different conditions.

OP27 is a serial number of a kind of OP amp (operational amplifier), which has the

characteristics of low 3dB cut-off frequency (10 Hz for open-loop gain) and slow slew

rate (2.8 V/µs), which performs a rising / response time 300 µs in our circuit. RI

and RD are resistors to solve DC-biasing defect of OP amp and the high frequency

noise amplification, respectively.

Figure A.7 shows the performance of our feedback system, where the initial power

fluctuation (about 10%) is reduced to less than 1%.
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Figure A.6: The circuit of the PID controller, where the resistance of Trimmer 1, 2

and 3 are around 2.2, 0.28 and 0.85 KΩ, respectively; the switch is also shown on

the box cover (see Fig. A.5); RI and RD are special resistors designed to solve some

issues, as explained in the text.
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Figure A.7: The stability test of the control field power. The PID feedback system

reduces the power fluctuation to less than 1%.
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