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Summary

Measuring the motion of quantum particles has been playing a significant role in
performing high precision inertial sensing and studying fundamental physics. While
most of the motion sensing schemes with cold atoms are based on single-particles. In
this thesis, a new measuring method of using a collective state of atoms for motion
quantum sensing is introduced. Two experiments were demonstrated to investigate
its feasibility. One is related to the light-dragging effect in an electromagnetically
induced transparent (EIT) cold 8Rb atomic ensemble. The dragging coefficient F
was enhanced to 1.67 x 10°, which was three orders of magnitude better than the
previous experiments. With a large enhancement of the dragging effect, we realised
an atom-based velocimeter that has a sensitivity of 1 mm/s, which was two orders
of magnitude higher than the velocity width of the atomic medium used before.
Such a demonstration could pave the way for motion sensing using the collective
state of atoms in a room temperature vapour cell or solid-state material. Another
experiment is related to the motion sensing in a driven periodic potential. The
motion of the atomic ensemble undergoing Bloch oscillation was measured using the
light dragging method. In order to have efficient Bloch oscillation of atoms, the
first Raman sideband cooling of 8°Rb to pre-cool atomic ensemble close to the recoil
temperature (357 nK) was achieved by us. The phase shift measurements showed
the linear-like relation to the accelerating time with the data precision 0.00036 rad
(0.005 ns, 0.7 mm/s), instead of the stepwise oscillation period 75. To observe the
stepwise motion, it is required to reduce the lattice field intensity and implement

the velocity selection technique to select atoms with a narrow velocity width.



Chapter 1

Introduction

Measuring the motion of some macroscopic object has played a significant role in
inertial sensing and navigation. For example, the Doppler radars, as show in Fig. 1.1
[1], rely on measuring the first order Doppler shift of microwaves or ultrasonic waves
bouncing off a reflector and analyzing the frequency shift of the data to estimate the
corresponding velocities of the object. At single atom level, measuring the motion
of atoms has been playing a significant role in performing high precision inertial
sensing, such as gravity, gravity gradient, and rotation [2]. It has also been used to
study the fundamental physics, including quantum tests of the equivalence principle
[3, 4], and measurements of the fine structure constant [5] and Newton’s constant G
[6]. However, the low probability of the coherent scattering process prohibits precise
measurement, of light reflecting off atoms.

Alternatively, measuring the velocity of an atom depends on measuring the
Doppler shift of the absorption spectrum of single atoms in a large atomic ensem-
ble. Due to the thermal broadening of the ensemble, it is indispensable to map out
the velocity distribution of the ensemble to determine the most probable velocity.
One method is the Doppler sensitive two-photon Raman velocimetry that uses a
pair of counter-propagating laser fields to drive a pair of long-lived states of atoms
[7]. By detuning the relative frequency of the counter-propagating laser fields, a
sub-group of atoms with finite velocity width, which is determined by the pulse
duration, can be selected. Due to the finite temperature of the ensemble, the most
probable velocity is then determined by scanning the detuning of the laser fields to
map out the Doppler distribution and fit the Maxwell-Boltzmann distribution with
the data. As a result, the sensitivity is largely limited by the Doppler broadening



Figure 1.1: A Doppler radar for the forecast (measure the speed of the rain and the

hail) and the severe storm research in Kansas City, US [1].

of the atomic ensemble. To improve the sensitivity, one would have to prepare an
ensemble at ultra-low temperature [8], which requires a complex laser cooling and
trapping setup. In addition, all the measurements must detect the population of
atoms in a particular quantum state by shining a resonant light to the atoms and
record the absorption or fluorescence from the atomic cloud. Such detection meth-
ods destroy the coherent motion of atoms, as a result, each measurement can only
detect an instantaneous moment.

Chabé et al. used laser-cooled spin-polarized Cesium atoms to achieve a ve-
locity resolution of 70 pum/s, or vg/50 (vg is the recoil velocity, whose detail is
explained in Section 2.2.1) [9]. Reference [10] reported a resolution of vg/18 and
Reference [11] reported a resolution of vg/17 (both with Cesium). For Sodium
atoms, 290 um/s, or vg/100 has been reported in Reference [7]. These results were
a breakthrough achievement, but the repeated ensemble-reloading and the motion
decoherence needed to be improved for the higher efficiency and more experimental
requirements, respectively.

This thesis focuses on the development of the new measuring method that detects
the phase shift of the light passing through a moving collective quantum state instead
of projection measurement of atomic states, and investigating its applications as a

new type of motion sensor. This method is based on light-dragging effect using the



collective quantum states of an atomic ensemble, therefore, it can sense the center-
of-mass motion of an ensemble directly. In particular, electromagnetically induced
transparency (EIT) phenomenon was applied as a versatile and core technology for
quantum sensing.

In Section 1.1 and Section 1.2, the laser cooling technology of atoms and the
fundamental theory of EIT effect are briefly introduced, respectively. In Chapter
2, we will introduce light dragging effect and use EIT to enhance this effect by
three orders of magnitude and demonstrate a method that can sense the centre-
of-mass motion of an atomic ensemble directly. In Chapter 4, we will show how
to use light dragging effect with EIT to measure the motion of atoms undergoing
Bloch oscillations in an optical lattice. However, to ensure the atomic ensemble
can perform Bloch oscillation efficiently, the temperature of atoms near the recoil
temperature is required. The Raman sideband cooling is, therefore, implemented to

cool ®Rb down to few hundreds nano-Kelvin, which is described in Chapter 3.

1.1 Cold Atoms

Atoms in gas form has been widely used for quantum sensing, metrology, and quan-
tum information. They are ideal platforms for those applications because they are
stable without any decomposition issue, and have simple energy levels due to no
internal rotation and vibration, which is important for manipulating atoms with
light.

For room temperature atoms, the velocity distribution of the atomic ensemble
causes the Doppler broadening on the atomic transitions, which limits the efficiency
and accuracy of atom-light interactions. To avoid this constraint, cooling atoms
down to natural linewidth limit is necessary. However, the most powerful fridge or
cryogenics could only achieve 4 K (liquid Helium) temperature, which corresponds
to a linewidth (FWHM) of its Doppler broadening of about 12 MHz, still larger than
the natural linewidth of most atomic transitions, e.g. 6 MHz for ®*Rb.

To achieve a lower temperature, the laser cooling technology was invented and re-
fined since 1970s [12, 13]. The basic idea is to directly reduce the atoms’ momentum
by laser radiation forces, instead of using the heat transfer to another cold reservoir

by collisions in the normal fridges. The early laser cooling techniques for atoms



could achieve a temperature lower than 50 pK, and it can also make a condition
called “optical molasses” [14], which means that the atoms with a small velocity
distribution can be captured by electro-magnetic fields in some small region. In the
optical molasses, the motional behaviour of atoms is constrained in a very small
range such as that the atoms are sticky with each other, but the friction force in
this case is produced by electro-magnetic fields, not the interaction among atoms.
Therefore, each atom is identical and isolated, which provides a clean and interesting
platform for many applications.

In this experiment, the cooling processes include three parts: Section 1.1.1
Doppler cooling, Section 1.1.2 Magneto-Optical Trap, and Section 1.1.3 Sub-Doppler
Cooling. The practice of the above techniques in this experiment is described in Sec-

tion 1.1.4.

1.1.1 Doppler Cooling

Doppler cooling is a method of laser cooling technologies based on momentum-energy
conservation and Doppler effect [15, 16]. The basic idea is shown as Fig. 1.2.
Photons with a momentum hk can be absorbed by an atom if the frequency of
photons is on-resonant between two energy levels of that atom. The momentum
of photon is then transferred to the atom and changes the velocity of the atom.
Because of the finite natural linewidth of energy levels, the population relaxes back
to the ground state by the spontaneous decay process which emits photons with the
momentum Ak isotropically, even in the vacuum [17]. This spontaneous relaxation is
triggered by the electro-magnetic fields in any space, so the propagation direction of
the emission in the relaxation process is isotropic, which results in zero momentum
change of the atoms. As a result, the atom can be slowed down by one hk in one
absorption-emission cycle.

Considering an atom with a momentum p absorbs a photon with a momentum

hk, the new momentum p’ of the atom after the absorption process is:

p =p-+hk
p? =p® + (hk)* + 2hp - k. (1.1)

Using energy conservation, the change of total energy in the process is:
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Figure 1.2: (a) A photon with a momentum Ak is about to interact with an atom
at rest; (b) The photon is absorbed by the atom, and transfers its momentum to
the atom; (c¢) The isotropic relaxation process does not make any change of atom’s

momentum, so an atom can absorb n photons to receive a momentum nhk [15].

2 /2

p A
Bt ho=E+ — (1.2)
(hk)?

E'=E+hw-k-v)— (1.3)

2M
In Egs. 1.2 and 1.3, E and E’ are the internal potential energies of the atom before
and after the photon absorption, respectively. Aw is the photon energy. M and v
are mass and velocity of the atom, respectively. (hk)?/2M is the recoil energy. The
recoil energy is equal to the kinetic energy transferred from a single photon to an
atom, which changes the velocity of the atom and is usually very small compared
with E. The term h(w—k-v) in Eq. 1.3 is the first order Doppler effect, which shows
that the actual photon frequency experienced by the atom is red- or blue- detuned
to w —k-v. To decelerate atoms, the photon frequency w should be red-detuned to
achieve the on-resonant transition in the counter-propagating configuration (k-v <
0) between atoms and photons for the cooling process.

The Doppler cooling mechanism can be represented by the Doppler friction force

f [18] as:

BT 02/2
e = G ko T2 (14)
Q2T
f=fi—f =~ hk2—<52 n F2/4)2v, (1.5)

where f, and f_ are the friction forces along and opposite to the axis of atoms’

motion, I' is the natural linewidth of the excited state, () is the Rabi frequency of

9



the light-atom interaction, and § is the photon detuning, which is equal to w — wygy
(wqp 1s the energy separation of this two level system, |a) and |b), used in the cooling
process). In the low-velocity limit kv < T',4, the total Doppler friction force f
can be approximated in Eq. 1.5 and is shown in Fig. 1.3. The friction force in
Eq. 1.4 is derived from the rate of momentum transfer from a photon to an atom,
which is equal to hk X 7., where 7, is the photon scattering rate on |a) — |b)
transition. The frequency response of the friction force is, therefore, the same as
that of the scattering rate. In addition, the friction force spectral profile is shifted
due to Doppler effect. The choice of the detuning ¢ depends on the capture range of
the line profile. If it is too large, the cooling becomes inefficient because the cooling
temperature limit is set too high in the beginning; if it is too small, there is only a
small fraction of atoms participating in the process. There is one more point should
be noticed: f is proportional to the light intensity (included in ©?), which is very
different from the behaviour of sub-Doppler cooling (see Section 1.1.3), which is
independent of the light intensity. Owing to random fluctuation of the force, which
gives rise to diffusion in momentum space, the minimum temperature T of Doppler
cooling is obtained for § = —T'/2 [19] as shown in Eq. 1.6. For ®Rb, T is about
140 pK.

r
kTp = % (1.6)

1.1.2 Magneto-Optical Trap

The Doppler cooling just offers a mechanism to decelerate atoms’ motion, but atoms
could still diffuse out of the cooling field area. Magneto-Optical Trap (MOT) con-
figuration offers a magnetic potential to confine atoms, as shown in Fig. 1.4. To
confine atoms, a pair of anti-Helmholtz coils (see Fig. 1.5) is applied [20]. It provides
a region of a quadrupole magnetic field as shown in Fig. 1.6, and uses the magnetic
field gradient to produce a position-dependent Zeeman shift on the atoms for the
trapping purpose.

The magnetic field gradient near the central position is a linear function of
positions along x, y, and z axes, where z axis is defined in Fig. 1.5, and x and
y axes are symmetrically identical. In the 1D case along the z-axis, the magnetic

field is B,(z) = bzz, where b is a constant. The Zeeman shift induced by B, is

10
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Figure 1.3: The friction forces of f,, f_ and total f are a function of the atomic

velocity v with § = —I"/2 [18].

O—

Figure 1.4: A schematic of MOT shows the alignment of the cooling laser beams

and the magnetic field produced by a pair of coils. [18]
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Figure 1.5: Anti-Helmholtz coils. The Figure 1.6: The contour plot of
directions of the current flows in two  quadruple magnetic field on xz plane
coils are opposite [20], which produce  shows the magnetic field gradient.
a quadrupole magnetic field in the The brightness corresponds to the
MOT area. field strength [20].

gritpB(z), where gp is the g-factor including the orbital L, spin S, total J angular
momentum of the electron, and nuclear angular momentum [/ as shown in Eqgs. 1.7

- 1.9 [21], where pp is Bohr magneton efi/2m..

J=L+S (1.7)
F=L+S+1I (1.8)
o~ gJF(F +1) _22((;++1i)+ J(J+1) 19)

Combining the Zeeman shift with Doppler cooling, the friction forces in 1D

cooling beams arrangement become:

kT 02/2
2 (6 einby ¥ k)2 +12/4)

The cooperation between Doppler cooling and position-dependent Zeeman shift is

f+==%

(1.10)

explained In Fig. 1.7. The Zeeman effect modifies the detuning based on the
spatial function of the quadrupole magnetic field. The heating effect caused by
the cooling field from the opposite direction could be eased with the help of the

opposite Zeeman shifts. Taking an example in Fig. 1.7, the atoms in + position can

12



be decelerated by o~ polarized cooling field and accelerated by o™ polarized cooling
field. With the Zeeman shifts by the quadruple field, they have lower probability to
absorb o polarized cooling field due to an increased detuning from the cooling field
frequency. The MOT quadruple magnetic field is a function of the space, which not
only increases the cooling efficiency, but also produces a trap with zero magnetic field
near the center, which provides a functionality to gather the atoms near the central
region. The same analysis can be extended to the 3D case. In this experimental
setup, three circularly-polarized light fields are applied as the cooling light sources

described in Section 1.1.4.

o) position

Figure 1.7: In |g,J = 0) to |e,J = 1) case, Zeeman shifts change linearly near
the center. ot and o~ are the right-hand and left-hand circular polarization of the

cooling fields [18].

1.1.3 Sub-Doppler Cooling

The lowest temperature that can be achieved in Doppler cooling in Eq. 1.6 is
unfortunately still too high for some applications, such as the production of Bose-
Einstein Condensate. In 1988, the first sub-Doppler cooling was demostrated by W.
Phillips’ group in the National Institute of Standards and Technology (NIST) [22].
They developed a new mechanism to overcome the Doppler limit and showed a new
limit of the temperature Tk in Eq. 1.11. After many years of studies, the Nobel
Prize in Physics 1997 was jointly awarded to Steven Chu, Claude Cohen-Tannoudji
and William D. Phillips for the development of sub-Doppler cooling mechanisms to

appreciate their contributions in laser cooling technologies and fundamental physics.
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(hk)?
2M

In Eq. 1.11, Ty is called the recoil temperature, which corresponds to the kinetic

kpTh = (1.11)

energy of the atom with the mass M absorbing one photon with the momentum
hk. The recoil energy kgTr (frequency) in Eq. 1.11 is typically much smaller than
the nature linewidth I' of the excited state in Eq. 1.6, so sub-Doppler cooling can
achieve a cooling temperature much lower than Doppler limit 7. The mechanism
of sub-Doppler cooling is highly related to the polarization variation of the cooling
field, so it is also called that polarization gradient cooling (PGC). There are two
kinds of configurations, 0 —o~ and lin_Llin for sub-Doppler cooling schemes. In our
experiment, we use o — o~ configuration of light fields. To analyse the mechanism,
the total electric field E(z,t) composed with two counter-propagating light is written
as [23]:

E(z,t) = et (2)e“) 4 c.c., (1.12)

where the amplitude and polarization term e*(z) is given by:

et(2) = epey €™ 4 ghe_e (1.13)
1
€+ = —E(Ex + iEy) (]_].4)
1

(1.15)

€E_ =

—(€; — 1€,).
T5es i)
In Eq. 1.13, e, and e_ are unit vectors for two opposite circular polarizations, and ¢
and g), are amplitudes of fields with corresponding polarizations. After rearranging

Eq. 1.13, it becomes:

1 l

et(z) = E(ag —g0)éx — E(ag + &)y (1.16)
ex = €, cos(kz) — ¢, sin(kz) (1.17)
ey = €;sin(kz) + ¢, cos(kz). (1.18)

From Eq. 1.16, it can be found that these two counter-propagating light fields form
a standing wave with a linear polarization rotating along z-axis, as shown in Fig.

1.8.

14



Figure 1.8: The polarization of the standing wave in o™ — o~ configuration [23].

From Fig. 1.8, it can be seen that the ellipticity of the polarization at all po-
sitions keeps the same. Taking J, = 1 <+ J. = 2 transition as an example and
considering the transition probabilities with Clebsch-Gordan coefficients shown in
Fig. 1.9, the population in different ground Zeeman states after optical pumping
with 7 polarization would be different, where |g_1), |go), and |g;) in the steady state

are equal to 4/17, 9/17, and 4/17, respectively.

e_2 €1 ep €41 e,2
1 1
1 v, 3 ,
1 é V2 E 2 B 1
9oy 90 941

Figure 1.9: Clebsch-Gordan coefficients of J;, = 1 <+ J. = 2 transition [23].

In addition, the light fields make energy shifts A’ of ground state through AC
Stark shift [24], so the difference of transition probabilities between |go) — |eo)
and |g41) — |ex1) causes the energy splitting of the ground state, as seen in Fig.
1.10. This splitting does not change along z axis because all atoms on the z-axis
experience the same linearly polarized electric field, which is very different from the
mechanism of Sisyphus effect in linLlin configuration [23].

To simplify the theoretical analysis, we assume that e = ¢y in Eq. 1.16. We
also assume the atoms stay at rest on the origin (z=0), and the electric field of the

cooling field is aligned on y-axis. Now we define y-axis as the quantization axis

15
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195,

Figure 1.10: Energy shifts of the ground state. A{ ;,; means the energy shifts of
|go.+1). Note all A" are negative due to red-detuned light frequency for cooling
processes and Af; = (4/3)A’,, can be derived from the ratio of transition probabilities

123].

of atoms, so the atoms would experience the optical pumping with 7 polarization,
and |go +1), would be the eigenstates of J, (J is the angular momentum operator).
However, when the atoms are moving on z-axis, they would feel a rotating electric
field. If we describe the atoms in a rotating and moving frame, the inertial fields
which act on atoms keep the same as that at rest, but append an extra magnetic field
energy coming from the rotating frame along z-axis. Based on the real condition,

we made two assumptions:

"< |A'| < T (1.19)
kv < |A']. (1.20)

In Eq. 1.19, I is the scattering rate of the ground state for population transfers
during the cooling process, and I' is the atomic natural linewidth of the excited
state, the same as the definition in Eq. 1.4. In Eq. 1.20, k is the wavenumber of the
cooling field; v is the velocity of the atom, the same as that in Eq. 1.3. From Egs.
1.19 and 1.20, the energy splitting among different Zeeman states is much larger
than the linewidth of each level, which makes sub-Doppler cooling possible to work.
The light shift A’ is tuned to be much smaller than I', which makes the friction force
f of sub-Doppler cooling is much larger than Doppler cooling (it will be explained
later). The parameter kv with the atomic velocity is supposed to be much smaller

than the light shift A’, because extra Zeeman shifts show up when the velocity is

16



too high, which can destroy the working procedures of sub-Doppler cooling. It is
why sub-Doppler cooling has to follow Doppler cooling to work in the whole cooling
process, and we can treat it as a perturbation in the analysis.

We apply the perturbation theory to calculate the effect from the extra magnetic
field, which potential V., could be shown as:

Vinow = k... (1.21)

Because J, and J, cannot commute, the perturbed eigenstates |go 1), at rotating
moving frame would be the linear combination of |gg 11), as a function of the energy

shifts A" and the velocity factor kv shown in Eqs. 1.22 and 1.23:

S kv

|90>y = ‘90>y + m(|g+1>y + \9—1>y) (1.22)

— kv

|g1)y = [g+1)y — m@tﬁy- (1.23)

Since the circularly polarized light is used as the cooling source, so we calculate the

average amount of J, [23] as:

40 hkv

<JZ> = y<90|<]z|90>y + y<g+1|JZ|9+1>y +y<9—1|‘]2|g—1>y = 1_7 AL (1-24)
0

(J,) is proportional to the population difference between |g.1). and |g_1),. Owing
to the different transition probabilities between |gi1), and |g_1), interacting with
two circularly polarized cooling fields (see Fig. 1.9), if the atom is moving toward
+2z direction (v > 0), the population on |g_1), is more than that on |g;1)., so the o~
transition dominates in this case. In our example model in Fig. 1.8, the light field
with ¢~ polarization propagates in -z direction, which makes the atom decelerated.
The same situation happens to the atom moving toward -z direction. To quantize
the ability of sub-Doppler cooling, the friction force f can be derived as:
dp _ (J2) I

— = A .F/m 2—_ 1.2
f=r =7 bk hk? v (1.25)

Under the low-intensity limit such as |A'| < I' (see Eq. 1.19) and Q@ < T, the

approximations of I and A’ are given as follows [23]:
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Mo (1.26)
2
A~ % (1.27)

The friction force of sub-Doppler cooling can then be approximated as:

e hk2§v. (1.28)

If we compare the orders of magnitude of the friction forces of sub-Doppler
cooling and Doppler cooling (fpoppler & 22/6% X fub-Dopplers S¢€ Eq. 1.5), we can find
that sub-Doppler cooling can offer much stronger friction forces than that Doppler
cooling does, because the detuning ¢ has the same order as I' in the cooling process.
In addition, the friction forces are independent of the intensity of the cooling light
field as Eq. 1.28 shows, because the intensity terms, which are proportional to Q2
in IV and A/, cancel each other in Eq. 1.25.

Sub-Doppler cooling is widely-used in the production of cold atoms following
the Doppler cooling process, because the operation in the experiment is straightfor-
ward, even though some fraction of atoms are lost during the process. Although
a combination of Doppler and sub-Doppler cooling can typically cool down atoms
to a few tens pK, it is still not sufficient for some applications that require atoms
in the recoil temperature range. To improve this situation, a cooling method that
can bring the temperature of atoms down to recoil temperature is required, such as
Raman sideband cooling. Our implementation of Raman sideband cooling will be

described in Chapter 3.

1.1.4 Equipment and Time Sequence

In this experiment, the cold atomic ensemble was produced and maintained by a
commercial MOT equipment (miniMOT from ColdQuanta), as shown in Figs. 1.11
and 1.12. The miniMOT package is a combo set that provides the cooling beam
alignment, MOT coils, Rb atom dispenser, quartz cell vacuum chamber, built-in ion
pump and control units. It is a compact setup but we modified it to fit our needs:
1. We rearranged the MOT beams optics so that other experimental apparatus,

such as the RF waveguide and CCD camera, can be brought close to atoms.
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Cooling field

MOT coil

Atom
chamber

Figure 1.11: miniMOT chamber and its package. The atom chamber, MOT coils
and the path of cooling fields are indicated in the figure.

— RFjwaveguide N >
& /_ ~1 =~
- ".»‘ e 4 o

Figure 1.12: miniMOT package in our experimental setup. The atom chamber,
MOT coils, the path of cooling fields, RF waveguide and CCD are indicated in the
figure.
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2. The vacuum pressure indicator was broken after a year of operation. We used
the MOT loading time to gauge the vacuum pressure inside the chamber.

3. The current control of the coil is not programmable, so we modified the power
supply of the coil pair to have full control of its current, and connect it to our home-
made voltage-control current box (see Appendix A.1). Owing to this modification
and an analogue voltage-control channel in our controlling system (ADbasic from
ADwin), the strength of the magnetic field for our MOT can be programmed.

4. The factory-set maximum current of MOT coil is 1 A. This limits the at-
tainable current for the compressed MOT [25], which requires a current of a few
amperes. We used extra coils in the crowded space near the chamber to make this

trick barely feasible.

]

~

Cooling Field Power
Coil Current

Cooling Field Detuning
Repump Field Power

N

Controlled Voltage (V)
w

—_

o

10 20 30 40 50 60
Time (ms)

o

Figure 1.13: The time sequence near the end of the cold atoms production. The
four voltage-controlled parameters are the cooling field power, the coil current, the
cooling field detuning and the repump field power. The shown time in this figure
started after 1-2 s cold atoms production with full power of the cooling field, the
MOT magnetic field and the repump field (the control voltage of the cool field power,
the coil current, the cooling field detuning and the repump field power were 5 V, 5
V, 5V and 0.5 V, respectively).

We coupled the red-detuned cooling field and the on-resonant repump field into a
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single-mode polarization-maintaining (PM) optical fibre and guided these two fields
into the miniMOT package as shown on the right-hand side of Fig. 1.11. A telescope
expanded the beam into a diameter of about 1 cm. A beam splitter followed by a
quarter waveplate (QWP) separated the beam into three parts and converted their
polarization into the circular polarization. These three beams were then guided to
the center of the glass cell chamber by three square gold mirrors. They were retro-
reflected back by three gold mirrors to form a three-dimensional MOT geometry
together with the quadrupole magnetic trap.

Figure 1.13 shows the time sequence close to the end of the cooling process. We
usually build and load the cold atoms from the dispensor for 1-2 s, and increase the
current of MOT coils at 24th ms to start the MOT compression (see the timescale
in Fig. 1.13). During the compressed MOT stage (24th - 38th ms), the cooling
field power linearly decreased to 98% of the initial power, meanwhile, the cooling
field detuning (absolute values) also linearly increased from -15 to -31 MHz, which
means the cooling field releases those cooled and trapped atoms from the shallower
and shallower optical lattice built by the cooling field. The coil current (magnetic
field) linearly increased from 1 to 1.02 A to make the magnetic trap deeper and
denser in space. However, it cannot be increased more due to the current limitation
of miniMOT. At about 50th ms, the magnetic field was sharply turned off within 0.1
ms, the cooling field power and detuning were reduced to 20% of the initial power
and -50 MHz, respectively. Sub-Doppler cooling stage started to cool down atoms
to 30 uK of our ®*Rb atomic ensemble.

The green line in Fig. 1.13 indicates the relative power of the repump field. The
repump field was used to prevent the optical pumping of atoms to other dark states
due to the detuning of the cooling field. The power of the repump field was 1/20 of
the cooling field power, which was linearly reduced to 0 from 8th to 21st ms, because
we tended to transfer the population to the dark state during the period close to
the ending of Doppler cooling stage. This strategy is called “dark MOT”, which
reduced the heating effect caused by the optical pumping from the cooling field and
the repump field, so that we could get a colder atomic ensemble before sub-Doppler

cooling stage.
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1.2 EIT Scheme

Electromagnetically induced transparency (EIT) is a non-linear optical phenomenon,
which involves the interaction among a non-linear medium and multi-photons to
achieve the quantum interference, found in 1990 [26]. As shown in Fig. 1.14, a simple
EIT scheme can be implemented in a three-level atomic system, wherein two lower
atomic states |1) and |2) with long coherence time are coupled to a third state |3)
by optical excitations. A control field resonating on the |2) — |3) transition creates
a quantum interference with a probe field resonating on the |1) — |3) transition.
The “transparent” phenomenon of EIT means that the on-resonant probe field is
not absorbed because of the presence of the control field, which can be explained in

two pictures: dressed atom picture and bare atom picture, see Figs. 1.14 and 1.15.

13)

Coupling
We

Probe

Figure 1.14: Dressed atom picture for EIT mechanism.

Dressed atom picture is a way to describe atom-photon interaction [27], where
atom states (1), |2),[3) - - - ) dress up photon number states (|N),|[N+1)---). When
the photons are resonant on the transition of the two level system of an atom, the

special dressed quantum states are given as Eqgs. 1.29 and 1.30:

1
(M) = (2. + 1)+ 3.N) (1.29)
BN)) = —— (12, N + 1) — |3, N)). (1.30)

S

2

The definitions of |a(N)) and |[b(N)) are shown in Fig. 1.14. Note that the energy
levels of |a(N)) and |b(IN)) are separated by a energy splitting /€2, so the probe field
becomes off-resonant. In addition, the energy splitting A2 is proportional to the

square root of the control field intensity, and off-resonant transitions are still possible
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to occur in a lower probability. To achieve the obvious transparency phenomenon,
the intensity ratio of the control field to the probe field should be as large as possible.

In our experiment, the intensity ratio is about 10.

13) 13)

Coupling
We

13) 3)

Coupling Coupling
We We

12) 12)

Probe Probe

Figure 1.15: Bare atom picture for EIT mechanism.

In bare atom picture, we can use double two-level systems to explain the EIT

mechanism.

U = co(t)e ™ |a) + cy(t)e ™" |b) (1.31)
calt) = Cos(%t) = () = ”#S(m) (1.32)
olt) = sin(5 1) = |es(1)F = I_#S(Qt) (1.33)

Equations 1.31 - 1.33 are the descriptions of two-level system |a) and |b) of an
atom interacting with an optical field with a Rabi frequency Q. We take |1) and |3)
in Fig. 1.15 as |a) and |b) in Eq. 1.31, and all the population are initially in the
state |a) (c,(0) = 1). The population in |a) can be transferred to |b) by a 7 pulse
with the time 7/€2,. Now we take |3) and |2) in Fig. 1.15 as |a) and |b) in Eq. 1.31.
If the Rabi frequency (2. of the control field is large enough, the control field can
give the atom a (24 4n)m pulse (n can be 0 or any positive integer) within the time
(24+4n)7 /.. When the time is still shorter than the 7 pulse time 7/, of the probe
field, the destructive interference could occur on |3), where no transition is allowed
on |1) — |3) transition (see Fig. 1.16).

In the quantitative analysis, because the coherence of atomic states is crucial
for the quantum interference in EIT process (see Section 1.2.3), the density matrix
is more suitable to describe the EIT effect. As shown in Fig. 1.17, by taking the
spontaneous relaxation rate I' and the dephasing rate v into account, the equation

of motion with the density matrix is [28]:
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() —>1 Destructive | ¢,(t) = -1

13) —f |b) | interference —F K |a) Trat?;i;ion
coupling Transition o Q+4m)r
time Q
1) "A — 4 b)  ees
P (ne{0,N})

c,(t)—>0

Figure 1.16: The detail of EIT mechanism for the bare atom picture.

13

4
M3z, Y32

v
Y31, 31

Figure 1.17: EIT three-level system with spontanecous relaxation rate I', dephasing
rate v due to collisions among atoms, single-photon detuning A and two-photon

detuning 6.
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; X [31p033 —Y21P12 —(5 +s1)p13
0
P %[Ii pl+ —Y21P21 U233 —( +mlpas | - (1:34)

_(% + V31) P31 —(% +v32)p32 — (31 + T'32)pss

Solving Eq. 1.34, the electric susceptibility x(* for the probe field can be obtained

as follows:

45(|2* — 46A) — 4AT3,
1212 + (a1 +32A) (Lo +420) 2
; 80°T31 4+ 221 (|Q]* + L1 T1)
[1Q0:]2 4+ (T31 + 12A)(Toy +426) ]2

where A and 0 are single-photon detuning (w3 — w,) and two-photon detuning

X(l)(_wpva> X p31 X

(1.35)

(w1 — (wp — we)), respectively. I' and v are the spontaneous relaxation rate and
dephasing rate, respectively, as indicated in Fig. 1.17. T3 = I'51/2 4+ I'32/2 + 731.
Yo = 721 (I'eg = 0). Because Eq. 1.35 has a complicated form and includes many

variables, some special conditions will be discussed.

1.2.1 (Y Diagrams

Figure 1.18 shows the behaviour of EIT effects. When each parameters in Eq. 1.35
are fixed except w, (A = ¢ in this case), the EIT produces a narrow spectral window
in Re[x™M] and I'm[x"] diagrams. Figure 1.18 also shows the potential application
called “slow light”. Owing to the very narrow EIT spectral window, the slope of
Re[x(l)] to the frequency can be very large, which makes the group velocity v, (see
Eq. 1.36) of the light in the EIT medium much smaller than the light speed ¢ in
the vacuum, so the interaction time between light and EIT medium would be much
longer than normal condition. We apply this dispersive condition for demonstrating

the light-dragging effect in Chapter 2.
Vg = ——————— (1.36)

1.2.2 Q. Parameter

The magnitudes of €. are related to the intensity of the control field. Figure 1.19

shows the correlation between the width of the EIT window and €., which is con-
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Figure 1.18: The plots of the refractive index Re[x(!] and the absorbance Im[y™"]
as a function of normalized A. Dashed lines are the conditions without the control

field, and solid lines are the conditions with the control field [28].

sistent with the results of the dressed atom picture in Fig. 1.14.
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Figure 1.19: The plots of the absorbance Im[xV] as a function of normalized A
with two different Q.: (a) Q. = 0.3Y31; (b) Q. =273 [28].

1.2.3 7T9; Parameter

EIT uses the coherence between two ground states for quantum interference. How-
ever, the total dephasing process would destroy the coherence between these two
ground states, as shown in Fig. 1.20. The total dephasing rate T includes the spon-

taneous decay rate I' and the dephasing rate v from collisions among atoms, which
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is the reason why the two hyperfine ground states are chosen as |1) and |2) to avoid

the spontaneous decay process between them.

0.6
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Figure 1.20: The diagrams of the absorbance I'm[x(!)] as a function of normalized

A with three different Tgli (a) Tgl = O7 (b) TQl = 01T31, (C) Tgl = 10T31 [28]

1.2.4 A and ) Parameter

From Fig. 1.21, we can see all Im[y}] are 0 if the ¢ keeps 0, which shows the reason
why the efficiency of EIT is sensitive to the two-photon detuning ¢, rather than the
single-photon detuning A.

In addition, if a large detuning of the control field A. is chosen as shown in
Fig. 1.22, the EIT spectrum would show a non-symmetrical behaviour [29, 30]. An
advanced cooling technology called EIT cooling takes advantage of the narrow line
in Fig. 1.23 to suppress the transitions of the carrier (v — v, Av = 0, where v
is the quantum number of vibrational levels in the optical lattice) and the heating
process (Av > 0) [30], to obtain the similar performance as Raman sideband cooling

(discussed in Chapter 3).
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Al

Figure 1.21: The contour plot of Im[x(!)] as a function of normalized A (A/Y3;)

and 0 (0/Y3;), the darkness corresponds to the absolute value of Im[x(M] [28].

-1

Ay

Figure 1.22: The axis of normalized
A marked on Fig. 1.21 with different
detunings of the control field A, [28];
the yellow line is the case with a sym-
metrical spectrum like Fig. 1.18; the
red lines perform two opposite non-

symmetrical spectra, one of them is

like Fig. 1.23
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Figure 1.23: The diagrams of the ab-
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malized detuning of the probe field A,
(the definition of A, is the same as A
in Fig. 1.22) with a positive detuning
of the control field (A, > 0) [30].
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Chapter 2

Motion Sensing with a Collective

State Atoms

Currently, atom-based motion sensors rely on measuring the first-order Doppler shift
of the atomic transition for single-particles. By using Doppler-sensitive detection
methods, e.g. two-photon Raman transition [1, 2|, the Doppler distribution can be
mapped out, and then use the distribution to determine the center-of-mass velocity
of an atomic ensemble. The two-photon Raman transition detects the atomic state
destructively, so for each data point, the cold atoms have to be reloaded, which
takes a long time and increases the concern of the system stability. To improve this
tedious procedure, instead of detecting atoms directly, we would like to measure
the center-of-mass motion of an atomic ensemble by the phase shift measurement of
light passing through the moving medium. This method is an application of light
dragging effect, which offers us an opportunity to acquire the motional behaviour
averaging the whole atomic ensemble with single-shot measurement.

As one of the most influential experiments on the development of modern macro-
scopic theory from Newtonian mechanics to Einstein’s special theory of relativity,
the phenomenon of light dragging in a moving medium has been discussed and ob-
served extensively in different types of systems. To have a significant dragging effect,
the long duration of light travelling in the medium is preferred. In 2012, Davuluri et
al. published their theoretical work [3] about the connection between light dragging
effect and slow light in a hot vapour cell. In our case, we experimentally demon-
strated the light dragging effect with EIT enhancement in cold atoms, all details
had been published (see Reference [4]). Here we demonstrate a light-dragging ex-
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periment in an electromagnetically induced transparent cold atomic ensemble and
enhance the dragging effect by at least three orders of magnitude compared with
the previous experiments. With a large enhancement of the dragging effect, we
realise an atom-based velocimeter that has a sensitivity two orders of magnitude
higher than the velocity width of the atomic medium used. Such a demonstration
could pave the way for motion sensing using the collective state of atoms in a room

temperature vapour cell or solid state material.

2.1 Light Dragging Effect and EIT Enhancement

The light dragging effect was discovered by H. Fizeau in 1851 before the Einstein’s
special theory of relativity [5, 6]. Figure 2.1 shows a schematic of Fizeau’s water
flowing experiment [7]. Light was separated into two beams and passed the flowing
water tube in a counter-propagating direction. The phase shift of the interferom-
eter formed by the counter-propagating light after passing through the water was
observed. However, because the optical paths of these two beams are identical, the

observed phase shift cannot be well-explained at that time.

In Flow
Water

i

Mirror

<

Light Out

_— T =

Out Flow i
Water Light In

Figure 2.1: The setup of Fizeau’s water flowing experiment in 1851 [7].

After a few decades, H. A. Lorentz took advantage of Einstein’s special relativity
and introduced a dragging coefficient Fy to describe changes of the phase velocity
v, of the light in the moving medium with the velocity v and the refractive index n

[8] shown in Eqgs. 2.1 and 2.2:
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v, =c+ Fqu (2.1)

B 1 won(w)
Fo=1= st

, (2.2)

where w is the angular frequency of the light. Equation 2.2 shows the reason why
the dragging coefficient Fy is usually very small because the refractive indexes n of
most matters are close to 1, and the dispersions On(w)/dw are insignificant.

Light dragging effect is difficult to be detected due to the small Fj; in most
cases. From Eq. 2.2, an obvious method to increase Fj; is to engineer a high
dispersion within a spectral range of the probe field. Unfortunately, under most of
the conditions, the frequency range with the highest dispersion happens when the
absorption is largest. To overcome the difficulty mentioned above and enhance the
sensitivity of the measurement based on the light dragging effect simultaneously,
EIT scheme was implemented in our system. As mentioned in Section 1.2, EIT
can artificially open up a transparent window for the probe field and create a high-
dispersion region as shown in Fig. 1.18. The spectral width of EIT is fully tunable
by the intensity of the control field, which means F,; can be controlled to fit the
experimental requirement.

To calculate the phase shift of light in the dragging effect, we considered the group
velocity of a wave-packet and used Taylor’s expansion to obtain the mathematical
form of the group velocity v, as Eq. 2.4 shows (ignore group velocity dispersion
and higher order terms). The relation between the velocity v of the moving medium
and the phase shift Ay through a medium of length L can, therefore, be derived as

shown in Eq. 2.6 (assume n ~ 1):

Fy~ w(g—” (2.3)
w
c c
Vg = n(w ~ n(w (24)
ntw(%) (%)
v
v, =c(1+ v_) (2.5)
9
L kL
o =kL = YL~ w—(l - 1) Ap = —O—thv = ——Fyv. (2.6)
Uy c Uy c c

In Eq. 2.6, t; = L/v, is the group delay of the light passing the medium.

Because of the benefit of EIT scheme, ¢, can be a few us long in our experiment,
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which increases dramatically, compared with other normal media. The velocity v of
the moving medium (it is the cold atomic ensemble in our experiment) can then be

obtained given that w and ¢ are both known quantities.

2.2 Experimental Setup

Motion sensing using the light dragging effect is the first experimental project demon-
strated in our optical system. In this section, the atomic configuration, the optical
setup and the experimental timing sequence for the motion sensing project will be
introduced. The atomic transitions of the preprocessing laser cooling step are also

included, whose optical setup and timing sequence are discussed in Section 1.1.4.

2.2.1 Atomic Configuration

In this experiment, 3Rb atom was chosen as the EIT medium, because there are
several advantages. First of all, the dipole transition wavelength of Rb is visible /
near infrared (IR) light, which provides us more choices of laser sources; Secondly,
the splittings of energy levels in ®Rb hyperfine structure are easy to set up for the
lasers in our equipments. Finally, the atomic mass M of 3°Rb is relatively heavier
than most of popular atoms like H, Li, Na and so on. Heavier atoms have slower
recoil velocity (Upecon = fik/M) and slower thermal velocity (Vghermal = \/m ),
which could be more efficient in the cooling processes.

There were many laser fields with different frequencies in this experiment, as
shown in Fig. 2.2. They can be classified into three parts by the different usages:

1. The cooling field: |F = 3) — |F’ = 4) (15 MHz red-detuned and circularly
polarized). The cooling field was used to decelerate the moving hot atoms by adding
momentum kicks in the opposite direction. To maximize the scattering efficiency
and avoid heating effects caused by this cooling field, its frequency needs to be
red-detuned due to Doppler effect (see Section 1.1.1). Additionally, it is better to
choose a cyclic transition as the cooling field, because the absorbed electrons could
relax back to their initial states only, which makes the cooling process able to run
continuously. Also, the scattering rate should be as high as possible. The circularly
polarized field is able to pump the population to the spin-polarized states, which
fits the bill.
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Figure 2.2: %Rb hyperfine structure and the relative transitions used in the ex-
periment. The red arrow is the cooling field with 20 MHz red-detuned from D2
|FF = 3) — |F’ = 4) transition. The two magenta arrows (D2 |F = 2) — |F' = 3)
and D1 |FF = 3) — |F' = 2)) are the push fields to accelerate atoms by the
momentum kicks. The purple (D2 |FF = 2) — [F' = 3) )and skyblue (D2
|FF = 3) — |F' = 3)) arrows are the probe and control field, respectively, for

phase shift measurements.
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2. The push field: there were two push fields (D2 |F' = 2) — |[F’ = 3) and D1
|F'=3) — |F" = 2)), both of which were versatile in this experiment. The function
of the push fields is to provide the momentum kicks by the resonant scattering to
push the atomic cloud upward or downward and control its average velocity. In
addition, both of these two push fields were separated into two parts, one was (a)
in Fig. 2.3, which was a directional laser field for the pushing task; the other was
(b) in Fig. 2.3, which co-propagated with the cooling field for the repump of the
cooling process (D2 push field) and the fluorescence imaging process (D1 and D2
push field), as shown in the right-hand side of Fig. 2.3. D2 push field was also used
as a repump field for the cooling process, to prevent some part of the population from
transferring to |F' = 2) due to the off-resonant transition |F' = 3) — |F' = 3) caused
by the red-detuned cooling field. D1 and D2 push fields were also the excitation
fields for the fluorescence imaging of the atomic ensemble. We used a CCD camera
to measure the shape and position of the atomic ensemble from the fluorescence of

atoms by absorbing D1 and D2 push fields.

D2 Push field

D1 Push field

Figure 2.3: D1 and D2 push fields are separated into two parts and then coupled
into different optical fibres: (a) a directional laser field to provide momentum kicks
for the pushing task; (b) a sixfold laser field, which co-propagates with the cooling
field, working as the repump field of the cooling process or the excitation field for

the fluorescence imaging of the atomic ensemble.

3. The probe field D2 |F' = 2) — |F’ = 3) and the control field D2 |F' = 3) —
|F" = 3) were used for EIT scheme (see Fig. 1.17), and their frequencies could be

turned by an acoustic-optical modulator (AOM) and an electric-optical modulator
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(EOM) for different single-photon detuning A and two-photon detuning § (see Fig.
1.17).

2.2.2 Optical Setup

The main optical setup is shown in Fig. 2.4. For the push fields, we coupled
both push fields together and set a stable magnetic indexing mount (NXIN - 16-
Position Indexing Mount from ThorLabs, Inc.) to direct the optical path upward or
downward. In addition, the velocity of the atomic ensemble is tuned by the intensity

of the push fields.

Detector 2

Probe BS \
K PBS
- Optical fiber
" ——  wy+70 MHz —>
— - -
Fabry-Parot Wp
etalon AOM
<=
Push (downward) 'l'\‘\\ N >
o
. :—\;),: - -
Magnetic
indexing mount Cold
atoms
Push (upward)
lg
PBS
Control —

- -
Detector 1

Figure 2.4: The primary optical setup in the motion sensing experiment.

In order to gain the sensitivity, we aligned the probe field and the control field
in the counter-propagating direction (£183° between two light beams), as the phase
shift Ay of the light dragging was proportional to the effective wavevector kg (ks =
k, — k. =~ 2k;) atoms experience [9]. The power of the probe field was set about
1 pW, much weaker than that of the control fields, which are about 600 W and
2000 pW. The two beams were overlapped on the atomic cloud of about 1.4 mm in
length in the optical fields’ direction. The control beam was collimated with a waist
of about 4 mm and the probe beam was slightly focusing at the center of the atomic

cloud with a waist of about 0.5 mm (shown in Fig. 2.5). The intensity ratio of the
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control and probe fields is about 10 : 1.

Control Beam

Atom Cloud

g9«

Figure 2.5: The size comparison of the control field, the probe field, and the atomic

cloud.

The control field was generated from a diode laser, and part of the power was sent
through an electro-optical modulator (EOM). The first sideband after the modulator
passed through a solid Fabry-Pérot cavity followed by a 70 MHz acoustic-optical
modulator (AOM). The field coming out of lower first order served as the probe
field, and the zero order served as an auxiliary field which then combined with the
probe field by a non-polarising beam splitter to form a 70 MHz beating signal. This
70 MHz signal was further split: part of the beam was sent through the atomic
ensemble for the light-dragging experiment, and the other half served as a local
oscillator for phase comparison as shown in Fig. 2.4. Since the auxiliary field was
70 MHz detuned from the probe field, it did not experience the large light-dragging
effect as the probe field, therefore, the phase shift of the 7T0MHz signal resulted from
the phase velocity dragging of the probe field only.

The detectors are APD with 1 pW saturation power (APD120A /M - Si Avalanche
Photodetector, 400 - 1000 nm from ThorLabs, Inc.), and the calculation method of
phase differences is introduced in Section 4.3.2. Moreover, the phase noise from
the vibration of optical elements is able to be greatly reduced, because the sub-
millimetre fluctuation of the optical path is negligible compared to the wavelength
of 70 MHz beating signal.

The solid Fabry-Pérot cavity is based on the interference concept as the frequency
filtering mechanism. For our central wavelength of the light field of 780 nm and
the thickness of the etalon of 7 mm, the free spectral range (FSR) is about 14

GHz. Transmission linewidth is 0.6 GHz, the extinction ratio is about 23.6 and
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the finesse (F') is about 23. However, the etalon is sensitive to the perturbation
from surroundings, such as temperature, which will cause a shift of the resonance
condition. We mounted the cavity with a thermoelectric cooler (TEC) to stabilise
the temperature.

For pulsing the probe field, the radio frequency fed into the AOM was amplitude-
modulated by a Guassian pulse with FWHM of 5 ps from an arbitrary function
generator. EOM (Phase Modulator from EOspace, Inc.) was used to fine-tune the
frequency of the probe field and scan the EIT spectra.

2.2.3 Timing Sequence

The timing sequence for the experiment is shown in Fig. 2.6. Initially, we cooled
the atoms close to 40 uK in a magnetic-optical trap. The upward or downward
push fields with 0.7 ms duration were then sent to the atoms after 5 ms. The EIT
pulses were applied to the atoms after the pushing process. The control field was
introduced 0.5 ms earlier for optical pumping to prepare all the population in the

ground state |F' = 2).
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Figure 2.6: The time sequences of the motion sensing experiment.

The velocity of the atomic ensemble was calculated by measuring the positions
of the atomic ensemble on a CCD camera at two different timing ¢; and t, separated
by 2 ms (see Eq. 2.7). The CCD camera received the fluorescence from the atoms

excited by the push fields. We also measured the temperature of atomic ensemble
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using time-of-flight (TOF) method by comparing the widths of the atomic cloud at
two different flight time (#; and to, they are 1 ms and 3 ms in our experiment) to

calculate the temperature (see Eq. 2.8).

position(ts) — position(t;)
Vaverage = ; P
2 — U
M width(ts)? — width(t;)?
Toy:= - 2 12 :

(2.7)

(2.8)

In Eq. 2.8, T, . is the temperature of one of z, y and z axes; M is the mass
of single ®*Rb atom; kg is Boltzmann constant (= 1.38 x 10~2*m?s~2kgK'). The
method of temperature measurement and calculation are based on the application

of Ballistic expansion of thermal atoms, as discussed in References [10, 11].

2.3 Data and Discussion

2.3.1 EIT Spectra

Figure 2.7 shows the transmission 7" of the probe pulse as a function of the probe
field detuning while the control field detuning is fixed (equal to two photon detuning
§). The results fit the theoretical model of Egs. 2.9 and 2.10 [12] (In Eq 2.9, ko is
the wavevector of the probe field in the vacuum; n is the number density of atoms;
Oaps 18 the cross-section of one atom in ensemble average; ps; is the density matrix
element between the ground state and the excited state (|1) and |3)), the same as
the definition in Eq. 1.35; I' (I'3;) is the spontaneous decay rate; €2, is the Rabi
frequency of the probe field; OD is the optical depth), which integrate the effects
from all hyperfine levels of 52P3/,. Referring to the parameters of the first order
electric susceptibility Im[x'] in Eq. 1.35), the obtained result was OD 36.0(4), the
control field Rabi frequency (2. was 0.582(5)I", and the ground state coherence Yoy
was 0.0031(1)[" (I" is about 6 MHz), so the high coherence between ground states
(|1) and |2)) was achieved.
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Figure 2.7: The transmission spectrum as a function of the probe field detuning in

the unit of excited state relaxation rate I' of ®Rb.

In Fig. 2.8, the EIT spectrum is measured with two different control field powers.
Our results fit these data with a Lorentzian function and obtained the peak widths
of 0.306(6)I" and 0.134(1)I" for 2 and 0.6 mW of the control field power, respectively.
From Fig. 1.19 and Eq. 2.11 [12], the width of the EIT transmission peak (Awgyans)
is directly proportional to the square of the Rabi frequency (proportional to the
intensity) of the control field (€2.), and inversely proportional to the square root of
OD (under the assumption of the dephasing rate To; & 0, see its definition in Egs.
1.34 and 1.35). Our experimental results matched the theoretical equations, and

we can see that if we tend to increase the light dragging effect without sacrificing
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the probe intensity, the OD has to be increased to compensate the decrease of the

dispersion (inversely proportional to Awgrans)-

QQ
'vOD

(2.11)
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Figure 2.8: The transmission spectrum as a function of the probe field detuning.
Black squares and blue circles show the spectra with 2 and 0.6 mW of the control

field power, respectively.

2.3.2 Velocity Sensing by Enhanced Light Dragging Effect

In this experiment, we hope to build an optical system to sense infinitesimal velocity
change by measuring and amplifying phase shifts of the signal light passing through
the moving medium. We built a cooling system to produce cold atoms, and then
made the whole atomic ensemble move in either positive or negative z-direction by
momentum kicks from push fields. Also, we measured the phase differences between
the data acquired in Detector 1 and Detector 2 (see Fig. 2.4).

The velocity of the atomic ensemble was controlled by the push field power,
which was correlated to the input power of their AOM switches. The power control

of AOM switches was set in the analogue setting of the experimental time sequence,
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Figure 2.9: The velocity of the atomic ensemble as a function of the push field power

controlled by the AOM amplitude control voltage with different directions.

so the voltage (power) output was consistent and repeatable. In Fig. 2.9, we can see
the velocity of the ensemble was almost linearly increasing with the voltage change of
the push field. There was one point worth noticing: the velocity at the zero voltage
point was a negative value, because the gravity needed to be taken in account. In
addition, one of push fields (D1) connected with a digital setting port, not controlled
by analogue setting, which meant its power cannot be fine-tuned. As a result, the
slope of velocity in push-up and push-down cases did not look symmetric in Fig.
2.9.

In Fig. 2.10, the delay time in the y-axis is proportional to the phase shift Ay,
where 27 x delay time = phase shift x period of 70 MHz beating (14.28 ns). From
these two spectra, we can find the near-linearity of the relation between the ensemble
velocity and the delay time (phase shift), where the little deviations come from the
fluctuation in the group time delay ¢, (see Eq. 2.6). The slopes of data line in the
above two cases are very different, which show the trade-off of EIT properties. Based
on Eq. 2.6, the slope is proportional to the dispersion (On/dw), and the EIT spectral
width is proportional to the power of the control field (see Eq. 2.11), so the slope
becomes smaller when the power of the control field is higher. In our experimental
result, the spectrum with 0.6 mW of the control field power has a larger slope than
that with 2 mW of the control field power, so it performs a better velocity-sensing.

However, if the power of the control field is too low, the probe will be absorbed due
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Figure 2.10: The phase delay time as a function of the atomic ensemble velocity.
(a) With control field power of 2 mW. The black solid squares and the black open
squares are the measured phases and the expected phases (left axis), respectively,
which refer to Eq. 2.6 and group delay measurements. (b) With control power of 0.6
mW. The blue solid circles and the blue open circles are the measured phases and
the expected phases (left axis), respectively, which refer to Eq. 2.6 and group delay
measurements. The red solid triangles are the group delay times (right axis). The
phase delay are measured in terms of the delay time. One cycle corresponds to 1/70
MHz = 14.29 ns. The measured phase uncertainty is by taking the standard error
of three cycles of 70 MHz sinusoidal wave in the probe field envelope and averaging
for 20 experimental cycles. Each experimental cycle takes 2 s. The group delay of
the probe field is measured at each velocity by fitting the center of the probe field

pulse with a Gaussian function.
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to decoherence (see the EIT mechanism in Fig. 1.16), and the working range of
the ensemble velocity becomes very small. For example, in our complete data plots
in Fig. 2.11, some data points on the left-hand side had a larger deviation from a
theoretical linear line. This was because those data points were outside of the range
of the EIT width in 0.6 mW case. This deviation was not observed in 2.0 mW case
because it had a larger EIT linewidth.
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Figure 2.11: The phase delay time as a function of the atomic ensemble velocity
in full range of our experiment. The filled squares and the hollow squares are
experimental values and calculated values by Eq. 2.6, respectively. (a) With control

field power of 2.0 mW; (b) With control field power of 0.6 mW.

There are some offsets between the measured delay time and the calculated
ones. We managed to reduce the control field power gradually, and found it would
disappear at some threshold value of the control field power, which meant that
it came from the EIT process. Now we focus on the velocity range near 0 m/s,
and offset to experimental data, the perfect matching between experimental and
theoretical values was obtained as Fig. 2.12 shows.

With the measured atomic cloud size 1.4 mm and our largest group delay time ¢,
855 ns, the dragging coefficient Fj; in our experiment had reached 1.83 x 10°, which
was two orders of magnitude larger than that with hot ®Rb vapor [13] and five
orders of magnitude larger than the original light dragging effect [5, 6], because of the
benefit from EIT enhancement. For the velocity sensing, our experimental setup can

perform a stable data acquisition and statistical calculations, so the error bars are
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Figure 2.12: The phase delay times in Fig. 2.10 offset to zero at zero velocity. The
solid circles (0.6 mW control field power) and squares (2 mW control field power)
are the measured delayed phases and the open circles (0.6 mW control field power)
and squares (2 mW control field power) are the expected delayed phases in Eq. 2.6

and group delay measurements.

insignificant on the data plots. In our experiment, we took advantage of heterodyne
setup to reduce the phase uncertainty, which was about 0.01 rad averaging for 20
experimental data points in a 2 s acquisition cycle. The uncertainty of the ensemble
velocity Av = 0.01/ks/t, = 1 mm/s was vg/6 (vg is the recoil velocity) and two
orders of magnitude smaller than thermal velocity uncertainty (Doppler broadening,

about 100 mm/s) of the atomic ensemble.
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Chapter 3

Raman Sideband Cooling

In Chapter 2, an application of EIT on the light dragging effect of a moving medium
in a free space was introduced. After the demonstration in a free space, we tend to
apply this technique to the moving atoms in a driven periodic potential. In partic-
ular, we plan to observe the periodic motion of atoms undergoing Bloch oscillation
in a moving optical lattice. However, to observe the coherent motion of atoms in
a driven optical lattice, atoms need to be loaded into the optical lattice sites and
dragged by that moving lattice. The efficiencies of the loading and dragging process
strongly depend on the temperature of the atomic ensemble. To maximize it, the
atoms need to be cooled down to the recoil temperature of D1 or D2 transitions.
To approach the recoil temperature of atoms for our further experiments, an
advanced cooling technique is necessary. However, many cooling techniques achieve
a lower temperature accompanied with high loss of atoms, such as Raman cooling
(velocity selection) [1-3] and evaporative cooling [4, 5]. Here, we apply Raman
sideband cooling technique in our system, which can both keep a large fraction
of atoms and closely reach the recoil temperature. Raman sideband cooling was
first demonstrated with ions [6]. In neutral atoms, Raman sideband cooling has
been demonstrated with °Li [7], 3K [8], ¥Rb [9-11], and '33Cs [12-16]. Different
experimental arrangements are required for different fine and hyperfine structures of
atomic species. ®*Rb atoms get a great interest in atomic physics due to their high
natural abundance in Rb isotopes and opposite sign of scattering length of their
hyperfine ground states [17]. On the other hand, the small energy separation of the
hyperfine states and large collision loss make 8°Rb less popular than ’Rb in the

community. In our experiment, we demonstrated the degenerate Raman sideband
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cooling of ®Rb atoms in a 2D lattice, and achieve 60% number of atoms remaining
in our cold atomic ensemble with a cooling temperature 400 nK close to the recoil

temperature 357 nK of ®*Rb D1 line transition [18].

3.1 Theory

Raman sideband cooling is one of ground-state cooling techniques, whose mecha-
nism is based on loading atoms into a harmonic potential well, and then transfer
the population of atoms to the vibrational ground state of the harmonic potential
to achieve a lower temperature. The quantized energy levels in the external po-
tential well are the core of the ground-state cooling technique. In our experiment,
they are provided by the optical lattice, whose properties are introduced in Section
3.1.1. With the foundation built from the optical lattice, the detail of the cooling

mechanism is introduced in Section 3.1.2.

3.1.1 Optical Lattice

A key role in Raman sideband cooling is the optical lattice. Simply speaking, an
optical lattice is the potential well produced by the standing wave of coherent laser

fields. Here a 1D lattice / standing wave is used as an example:

Eforward =A- COS(kZZ — wt)
FErackwara = A - COS(]{?ZZ + Wt)
Fiotal = Etorward + Ebackwara = 2A - cos(k. z) cos(wt), (3.1)

where k. is the wave vector on the propagation direction z-axis; A is the amplitude
of the light field; w is oscillation frequency. We can see that the electric field Fiota
of the standing wave periodically distributes and oscillates in the free space. Atoms
are trapped within the wavelength size potential through AC Stark shift.

AC Stark effect (shift), or light shift, describes how an atom responds to a light
field (AC electromagnetic filed), which is shown in Fig. 3.1. The same as EIT
effect in Section 1.2, there are two pictures for understanding this behaviour: the
dressed atom picture and the bare atom picture. Figure 3.2 shows the mechanism

of AC Stark effect in the dressed atom picture [19]. Q is the Rabi frequency of the
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Figure 3.1: Far-detuned light field with detuning A, causes AC Stark effect, which

makes the energy level shifts AFE based on the magnitude and sign of the detuning.

|g) and |e) represent the ground state and the excited state in a two-level system.

interaction between the incident light and the atom, and the definitions of |g) and

le) are the same as those in Fig. 3.1; |a(/V)) and |b(N)) are similar to those in Egs.

1.29 and 1.30, with an extra detuning A, as follows:

la(N)) = sinf|g, N + 1) + cosf|e, N)

B
Ela(vyy = §(Age + /A% +2?)

|b(N)) = cosf|g, N + 1) — sinf|e, N)

h U
E|b(N)> = §(Age — A?]e + QQ)

1 Q
0 Qtan ( ge), 0<46

ro]

(3.2)
(3.3)
(3.4)
(3.5)

(3.6)

In the case of the far-detuned light field (JAg| > ), and Ay > 0 as shown in

Fig. 3.2, the configuration and the energy of |a(N)) and |b(N)) are approximated

as:
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Figure 3.2: The mechanism of AC Stark shift AE in dressed atom picture. The

definitions of symbols are discussed in the text.

la(N)) = |g, N +1) (3.7)
Eja(ny) & e + % (3.8)
= AE; = Ejgny) — Age = +4|th2;| (3.9)
[b(N)) = e, N) (3.10)
By = — 4@; (3.11)
= AE, = By = —4@;'. (3.12)

The absolute value AE, . of the AC Stark shift in Egs. 3.9 and 3.12 can be
obtained as i2?/4|A |, which is directly proportional to the intensity of the incident
light field, and inversely proportional to the detuning of the light field frequency. In
the optical lattice, we tend to trap atoms in a potential well, so a large detuning (a
few GHz usually) is chosen to prevent the loss from unexpected scattering, and this
kind of optical lattice is also called “non-dissipative optical lattice”.

In the bare atom picture, AC Stark effect is treated as the energy shift caused by

the induced dipole moment in classical electromagnetism [20], or the second-order
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time-dependent perturbation theory in quantum mechanics [21, 22]. The induced

dipole moment P (per unit volume) is written as below:

P=a-E+(3:EE+~vy:EEE+--- | (3.13)

where E is the electric field which induces the dipole moment P; « is the polariz-
ability;  and ~ are the high-order terms, called hyperpolarizability. The hyperpo-
larizability is the key role to induce non-linear optical effects, but it highly depends
on the deviation from the harmonic oscillator model of electron binding potentials
and chemical bonds or charge transfer phenomena in molecules or solids. Through-
out this thesis, the polarizability « is only considered in the analysis. The induced

dipole energy is shown as follows:

AEz—/P-EdUz—/E-@-EdU

gld-E*|le){e|ld - E|g hQ?
zZH 7LA><| |>_4A . (3.14)
ge

e ge

In Eq. 3.14, the Rabi frequency €2 is defined as (2/h){e|d - E|g), and the derived
AF is the same as that in dressed atom picture. AC Stark effect corresponds to the
behaviour of two transition dipole moments, (g|d-E*|e) and (e|d-E|g), so the polar-
ization direction of E is very crucial, because Clebsch-Gordan coefficients of atomic
transitions between different Zeeman states are different. In another words, we could
treat the polarizability a as a rank-2 tensor, and the perturbation Hamiltonian H

of AC Stark effect is written as [23]:

1 2
H(F)=c"(F)+ Y_ DE)TTO + 3" (R TR, (3.15)

g=—1 =—2

where c’; (—k < q < k) is the proportional coefficient, which is a function of the
detuning A4, Rabi frequency (2, total angular momentum quantum number F', and
symmetric condition relying on the polarization of the incident light field; ¥ T\q(k) is
the irreducible tensor operator, which shows the different behaviours among mag-
netic quantum numbers mp. In Eq. 3.15, the first term is called scaler light shift,
which depends on the intensity of the light field. The second term is called vector

light shift, which is proportional to the magnetic quantum number mg. This term
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offers a fictitious Zeeman effect [24]. The third term is called tensor light shift, which
is a function of the square of magnetic quantum number m3 [23, 25, 26]. Here, we
choose a large detuning A, (12 GHz) and the light field with relatively low intensity
(around 50 mW per beam with 1 cm? cross section). From Eq. 3.14, the difference
of AC Stark shifts among different Zeeman states is, therefore, small enough to be
ignored, which means that only scaler light shift would be taken into account in our

experiment.

3.1.1.1 Band Structure

Both of an optical lattice and a dipole trap take advantage of AC Stark effect to
trap atoms, but they are different in many ways, one of which is the band structure.
Taking the general case of 1D optical lattice as an example, the light field E is
defined as those in Eqgs. 1.12 - 1.15, with a tilted angle 6 of the polarization as
shown in Eq. 3.16:

» Z

Figure 3.3: The geometry of two counter-propagating light fields to build an optical
lattice [27].

E(z) = V2A{—e % cos(kz + 0/2)e, + €2 cos(kz — 0/2)e_}, (3.16)

where A is the amplitude, with the same definition as ¢ or ¢}, in Eq. 1.13. e, and
e_ are the right-handed and left-handed helicity of the light field. With the spatial
distribution of the light field, the potential operator U (z) of the optical lattice can

be written as follows [27]:
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U(z)=-E(z)-a-E(z)—71-B

2 ~
= —%{2[1 + cost cos(2kz)|I + [sinfsin(2kz)]|o,} — ng -0, (3.17)

where U is a constant potential without spatial and polarization factor; 7 and & are
the identity and Pauli spin operator, respectively; B is an external magnetic field.
From Eq. 3.17, we can see that the potential of the optical lattice consists of a simple
periodic distribution and two kinds of interactions with magnetic fields, one of which
is an internal magnetic field produced by the curl of the time-variable electric field
(e*(z)x€(2)), and the other one is externally applied (B). The internal magnetic field
is the source of the vector light shift, which is always along the propagation direction
of the light field and vanishes in the linear polarization case. However, the optical
lattice is also affected by other magnetic fields in any direction, so the Pauli operator
o in the last term is not specifically projected on z-axis (propagation direction). AC
Stark shift on the Zeeman state is a function of the magnetic quantum number
along with the light propagating direction as the quantization axis, so the external
magnetic field could break the symmetry of the band structure of the optical lattice.
Fortunately, it is not an issue in our experiment because of the large detuning, low
field power and linear polarization of the lattice field.

From (7(2) in Eq. 3.17, the band structure of 1D lattice could be solved. Taking
Cs atoms as an example, Fig. 3.4 shows the potential and the corresponding band
structure [27]. In Fig. 3.4, Eg is the recoil energy of the lattice field; I' is the
spontaneous decay rate of the excited state 6P5,5(F” = 5); k and ¢ are the lattice
photon momentum and particle quasi-momentum in the lattice, respectively. The
details of the band structure will be discussed in Chapter 4. In our Raman sideband
cooling experiment, the lattice band is approximated with a simple harmonic oscil-
lator model with energy series Flagice = Awyin(v + 1/2), where wyy, is the angular
frequency of the vibration in the lattice; v is a non-negative integer, which represents
the quantum number of discrete energy levels of a quantum harmonic oscillator.

Aforementioned discussions are related to the axial trapping of 1D lattice. The
1D dipole trap lacks the axial confinement, so it has no band structure in axial
direction, just be a guiding channel. In fact, both of 1D lattice and dipole trap can

produce radial trapping based on the beam profile, so it should also produce some
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Figure 3.4: 1D lin Llin lattice with Uy = 150 Er and detuning -2000I" from 65 jo(F' =
4) to 6P55(F" = 5) of Cs atoms. Left: the potential energies of different Zeeman
states calculated with Eq. 3.17, as a function of the spatial phase factor kz; Right:
the complete band structures of different Zeeman states in the first Brillouin zone.
Below the crossing points of the energy bands, the bands are in the tight-binding
regime with the energy width less than 0.1E%. Above, there are hybrid bands with

energy crossing points due to stimulated Raman resonance between some Zeeman

states [27].
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band structure in principle. But, the beam size (diameter) of our lattice field is
relatively large (about 0.7 cm), compared with the atomic cloud size (0.14 cm) and
the spatial period of the lattice (390 nm), so the potential in the radial direction

could be treated as a constant in our experiment.

3.1.1.2 Crystallography

The optical lattice is produced by the standing wave of the light field owning some
similar properties as a lattice in a solid, one of which is the band structure, and
another one is the geometric structure in crystallography. Taking a general 3D
lattice as an example, we assume that the periodic interval is a, and the potential

U shows the spatial periodicity as below:

a4,

a,

Figure 3.5: The spatial base vector a; in a lattice.

~

U(r) =U(r +a) (3.18)

a=nja; + nqgas + nsas, (319)

where n; and a; are integers and base vectors in the unit cell of the lattice, respec-
tively. Considering the orientation of light beams for optical lattice, and dropping
the time-dependent term exp(iwt) in Eq. 1.12 to simplify the model, the correspond-

ing geometry of the lattice can be obtained as follows:

E(r) = Z EmEme X T + c.c. (3.20)
Ur) o< I < |[EE[ =Y €2 + > 2e,,55(6m - €n)cos|(ky — ky) - 1. (3.21)
m m<n
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Em, €m and k,, are the amplitude, the polarization direction and the wave vector
of the mth light field, respectively, with the same definitions as those in Eqs. 1.12-
1.15. r and (k,, — k;,) are the general position vector and the reducible base vector
of the lattice field in k-space, respectively. The set of base vectors in k-space are
also called the translational vectors G of the reciprocal lattice in solid state physics
[28]. Owing to the linear dependency of vectors in the space, we could select some

*

of them as the base vectors a;

in k-space, e.g. select 3 (k,, — k,,) vectors (k; —
ko, ki — ks, ki — ky) as base vectors (aj,a},a}) of a 3D reciprocal lattice. Because
of the orthogonality between base vectors in the direct lattice and reciprocal lattice,

we could derive the set of base vectors a; in direct lattice [29, 30]:

a; a;f = 271'51']' (322)

* * * * * *
a5 X a; a; X aj aj x aj

a; = 2 Ay = 2T az — 2m (323)

where 9;; is Kronecker delta, equal to 1 for ¢ = 7, or 0 for i # j. Equation 3.23 shows
the calculation of a; of a general 3D lattice. Taking a 4-beam tetrahedral geometry
of light fields to produce a 3D lattice as an example, Fig. 3.6 shows the light beam

orientation and the unit cell of the corresponding real-space lattice [30].

3.1.2 Cooling Mechanism

As mentioned in Section 1.1.3 and the beginning of this chapter, sub-Doppler cool-
ing technique is although straightforward to operate, it is hard to reach the recoil
temperature. To solve this issue, a new technique to provide a confinement to
atoms, which more efficient than the dissipative lattice of sub-Doppler cooling, was
developed, which is also called the ground-state cooling technique.

The mechanism of the ground-state cooling is to build an artificial trap to limit
the motion of atoms, which quantizes the energy of atoms in the trap, and then
stepwise transfer the atomic population to the ground state of the trap by the
elaborated, specific momentum kicks for the reduction of the kinetic energy of atoms,
and finally achieve a lower temperature. The so-called artificial trap could be any
potential well, one of which is the optical lattice. Raman sideband cooling and EIT

cooling (mentioned in Section 1.2.4) are both members of the ground-state cooling
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Figure 3.6: The light wave vector k,, orientation and the unit cell of the correspond-
ing lattice. e,, . are unit vectors of the spatial axes; 6 is the angle between z axis
and other three light beams, which affects the final geometry of the lattice; white
and black balls indicate two types of lattice sites with different helicities of the light
fields [30].

family. In our system, the one we implement is Raman sideband cooling, which
consists of four components: optical lattice, magnetic field, two-photon Raman field,
and optical pumping field.

In Raman sideband cooling, the potential produced by the optical lattice is
approximated as a harmonic oscillator model, so the total external energy Elattice Of
an atom in the lattice is hwyi, (v+1/2), as mentioned in Section 3.1.1.1. Taking a 1D
lattice along z-axis as an example in Eqgs. 3.24 - 3.26, n is Lamb Dicke parameter. k,
is the wave vector of light field along z-axis. zg is the vibration width in the ground

2 shows the ratio of the recoil

state (v = 0) of the harmonic oscillator model. 7
frequency wg to the vibrational level spacing wyy,. The (20 4+ 1) term represents
the increase of the vibration width of higher motional states. Lamb Dicke regime
requires that the light field makes a small enough phase difference (k,z) within
the interaction length (2 = 29y/2v + 1) to suppress high-order transitions among

motional states [31].

29



n = k,zo (3.24)

2me h WR
7]2 2
<\/ h \/2mwvib) Wyib (3 )

(20 +1) < 1, (3.26)

Other than defining the quantisation axis for atom-light interaction, an external
magnetic field is not necessary for Raman sideband cooling. However, in order to
simplify the optical setup, the degenerate Raman sideband cooling was developed to
share the light field of the optical lattice and two-photon Raman transition by a spe-
cific Zeeman splitting. In Fig. 3.7, a two-photon Raman transition is implemented
to transfer the population into different vibrational levels by two degenerate Raman
fields. To make this situation happen, the Zeeman splitting needs to be tuned to

match the vibrational level spacing [12].

optical F=2
pumping =_

degenerate
Raman transition

6P3/o

v=2>

v=1>

v=0> -

Zeeman splitting

F=3, mF=2 681/2 F=3, m,:=3

Figure 3.7: The cooling cycle of the degenerate Raman sideband cooling for Cs
|F' = 3) state [12].

The functionality of Raman field is to transfer the population into other mo-
tional states of different vibrational quantum numbers (v <> v 4+ 1) by providing
haf momentum kick (see Eq. 3.23). However, two-photon Raman field could also
transfer the population to higher vibrational level as a heating process (v — v + 1).
Optical pumping field is then used to pump atoms on the lower vibrational level into
another Zeeman state while preserving the same vibrational level. Finally, to end
up the cooling process, the population of atoms fall into a dark state without the

pumping effect of two-photon Raman field and optical pumping field by choosing a
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proper polarization of the optical pumping field. As the example in Fig. 3.7, the

polarization of optical pumping field should be o™ + 7.

3.2 Experimental Setup

3.2.1 Configuration

The atomic transitions used in our experiment are shown in Fig. 3.8. The configu-
rations of Doppler cooling and sub-Doppler cooling are already discussed in Section
2.2.1. Only the key roles of Raman sideband cooling fields are described as follows:

1. The optical lattice field: it was produced by a taper-amplifier seeded by a diode
laser locked at 12 GHz red-detuned D2 transition. Each lattice beam is about 47
mW and 7 mm beam waist. The diode laser was injection-locked by the cooling laser,
and its frequency was tuned by a phase-modulated EOM (electro-optical modulator)
at 12 GHz. The -1 order sideband of the EOM was filtered through a temperature-
controlled Fabry-Pérot etalon to injection-lock the diode laser.

2. The circularly-polarized optical pumping field: 20 MHz blue-detuned D1 |F' =
3) — |F" = 2) transition. This D1 transition and polarization were chosen to pump
atoms into the spin-polarized state, which is a dark state in D1 |F' = 3) — |F' = 2)
transition. 20 MHz blue-detuning was set to reduce the single-photon scattering rate
and the Raman coupling between the dark state and its neighbourhood vibrational
states, which are discussed in Section 3.3.1. The larger hyperfine splitting of the
excited state (360 MHz, much larger than that of D2 line) could avoid unexpected off-
resonant transitions. As shown in Fig. 3.9, o% and a little fraction of 7 polarization
are both required in the cooling process, so we tilted a small angle (10°) of the beam
orientation to produce 7 polarization light, as shown in Fig. 3.10.

3. 2-state repump field: even with a small probability, atoms which interact with
the optical pumping field can be pumped to the |F' = 2) state and leave the cooling
process. We prepared a 2-state repump field with the resonant MOT repump field

to pump atoms back to the |F' = 3) state to continue the cooling process.

61



F'=4

52P5

D2 "“::::.:;‘. A F,=3
F'=2
----- .I Ao F'=1
F'=3
52P1yp -
— Ay
N F'=0
Optical Lattice
Pumping
F=
525y
Sz / 2-state
Repump
F=2

Figure 3.8: The atomic transitions for degenerate Raman sideband cooling. The
magenta arrow is the optical pumping field with 20 MHz (A;) blue-detuned from
D1 |F = 3) — |F’ = 2) transition. The purple arrow is 2-state repump field with
D2 |F = 2) — |F' = 3) transition. The skyblue arrow is the lattice field with 12
GHz (As) red-detuned from D2 transition.
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Figure 3.9: Degenerate Raman sideband cooling scheme in this experiment. The
cyan lines are degenerate Raman fields; the magenta lines are optical pumping fields,
where their thickness qualitatively represent the power difference between o+ and 7

polarized fields; A is the detuning of the optical pumping field.

3.2.2 Optical Setup

Figure 3.10 shows the alignment of our experimental setup for Raman sideband
cooling. The three cyan lines are the light fields of the optical lattice and two-
photon Raman transitions, which refer to the design in Reference [32]. Our optical
lattice is a 2D lattice on zy plane, where the spatial function of its potential U is

shown in Eq. 3.27, based on the analysis in Section 3.1.1.2.

4 ky — 3k k k
U= —gu[g + cos(\/gky) + COS(M) + 005(%)], (3.27)

where u is the potential energy made by a single light beam, & is the wavevector of the
lattice field. To illustrate the geometric structure, the contour plot is used to show
the potential distribution as in Fig. 3.11 (set u and k are both 1 for simulation). Near
the center of the potential dip (e.g. x=0 and y=0), Eq. 3.27 could be approximated
with Eq. 3.28. The harmonic oscillator model and its energy level series will then

be used in the further discussion.

U = u[—6 + 3k*(2* + y*)]. (3.28)
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Figure 3.10: The optical setup of Raman sideband cooling. The details of compo-

nents in the setup are explained in the text.

Figure 3.11: The contour plot shows the energy distribution of the lattice potential
U in Eq. 3.27. The blue to red color indicates the potential energy from low to high

values.

Another function of the lattice field is to play the role of two-photon Raman
field. Usually, two fields with different frequencies are required to drive a stimulated

Raman transition for population transfer from one state to another with different
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energy. In our experiment, we applied an external magnetic field along z axis to
shift the energy of the Zeeman states with one vibrational level spacing (Awy,), and
tilted a small polarization angle (20°) to create m and o* polarization simultaneously.
The lattice field could, therefore, drive the degenerate Raman transitions (see Fig.
3.9), which dramatically simplified the optical setup.

The optical pumping field was sent nearly vertically to the atomic cloud. We
used a non-polarizing beam splitter (NPBS) and a gold mirror to steer the optical
pumping beam into the atomic cloud, and tilted a small orientation angle (10°) along
the vertical direction to create an extra 7 polarization as shown in Fig. 3.9. The
CCD camera was used to record the fluorescent image of the atomic cloud on zy
plane and measure the temperature of the atomic ensemble along x and y axes (the

calculation equation is the same as Eq. 2.8). The results are shown in Fig. 3.12.

I3 Basler acA640-90gm CCD Acquisition v3.0.vi Tools (] = | e

[File Edit View Project Operate Tools Window Help K-
»[][@[n] X
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Figure 3.12: The program interface of the CCD image acquisition and the measured

temperature of = and y profiles.

3.2.3 Time Sequence

As discussed in Section 3.2.1 and 3.2.2, the time sequence of our Raman sideband

cooling system shown in Fig. 3.13 is composed of four parts. Firstly, MOT fields
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Figure 3.13: The time sequence of the Raman sideband cooling. The detail is

explained in the text.

containing the cooling field, the repump field and the quadrupole magnetic field,
were implemented to build a cold atomic ensemble with the temperature around 20
pK (see the details in Sections 1.1.4 and 2.2.1). Secondly, the magnetic field along
z-axis was switched on to shift the Zeeman states and define the quantization axis
for atom-light interaction. We extended the duration of 4 ms before and after the
cooling process, to ensure a steady state of the magnetic field along z-axis during
the cooling process. Thirdly, the lattice field was adiabatically switched on for a
2D optical lattice and transfered the population to the vibrational (motional) states
with smaller quantum numbers by two-photon degenerate Raman transitions. The
lattice pulse was created by a function generator following Eq. 3.29, which was
optimized with the duration 4 ms. The rising / falling time 0.8 ms of the lattice
pulse was shown in Fig. 3.14. The adiabaticity of the lattice pulse was very crucial,
where the rising stage loaded atoms into the lattice trap with a slowly-increased
potential well shown in Fig. 3.14, to prevent the atoms from the internal transition
to higher lattice bands in the beginning; the falling stage could process the adiabatic
cooling to cool down the atoms further [33] after Raman sideband cooling. Fourthly,
the optical pumping field and 2-state repump field were introduced during the steady
state of the lattice field (the 2.4 ms plateau in Fig. 3.14) to pump the population
into the dark state |F' = 3, mpr = 3) and finish the cooling process. Also, at 7 and 22

ms after the cooling process, MOT field was opened again for atomic cloud imaging
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to measure the temperature with time-of-flight method in Eq. 2.8.

I = tanh(b(t — 0.4)) + tanh(—b(t — 3.6)) (3.29)

247 0.8 ms : 2.4 ms : 0.8 ms

Intensity (A.U.)

-0.4 12 16 2 24 2.8

Duration (ms)

0.4

Figure 3.14: The time profile of the lattice pulse created by a function generator
with Eq. 3.29. b is 6 in this figure, which is proportional to the rising / falling slope.

3.3 Data and Discussion

In our experiment [18], Raman sideband cooling could achieve 400 nK, which is
very close to the recoil temperature 357 nK for D1 transition. Figure 3.15 shows
the atomic cloud profiles at 7 and 22 ms release time after Raman sideband cooling
process. The width of the atomic cloud is smaller after sideband cooling compared
to the atomic ensemble only cooled by Doppler cooling and sub-Doppler cooling
techniques. Another reason we chose Raman sideband cooling was its low loss of
atoms. Raman sideband cooling transfers the population from higher energy levels
to lower energy levels instead of abandoning them. In our experiment, more than
60% of atoms remained in the trap after Raman sideband cooling.

To confirm that atoms were pumped to the spin-polarised state after the cooling
process, the Zeman spectrum was measured as shown in Fig. 3.17. We integrated

the acquired intensity data of the 2D cloud image after the population transfer by
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Figure 3.15: Spatial profiles of the atomic cloud with and without Raman sideband

cooling (RSC) at 7 and 22 ms release time after the cooling process.

the radio wave and the removal of atoms in |F' = 3) by a blow-away field (see Fig.
3.16). We scanned the radio wave frequency to measure the population of atoms in
the Zeeman states as shown in Fig. 3.17. Owing to the fluctuation of the laser power,
magnetic field, and the small Zeeman splitting, we were not able to resolve all the
Zeeman sub-levels. Nonetheless, an obvious peak on the left-handed side showed
that the population was pumped to the spin-polarized state |F' = 3, mpr = 3) after

Raman sideband cooling.

3.3.1 Dependency of Cooling Temperature

The final temperature achieved by Raman sideband cooling is the result of the
competition between cooling and heating mechanisms. Refer to Reference [34], the

energy change AFE of atoms in a cooling cycle is:

AE = hwyn(20° — 1). (3.30)

The first term in Eq. 3.30 refers to the increase of two recoil energy Er from
the optical pumping field (absorption and emission) in each cooling cycle, and the
second term is related to the decrease of the energy of an atom by one quanta of
the vibrational energy hw,y,. The cooling effect takes place when AF is negative.
Please note that the population transfer caused by two-photon degenerate Raman

transition is not homogeneous due to the fluctuation or the spatial gradient of the
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Figure 3.16: The measurement scheme of Zeeman spectrum.
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Figure 3.17: Zeeman spectrum with and without Raman sideband cooling.
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lattice field power and z-axis magnetic field. As a result, the cooling efficiency might
not be uniform through the whole atomic ensemble.
Assuming the cooling is uniform in the ensemble, we consider an empirical equa-

tion of the time evolution of the cooling temperature of atoms as below:

dT Twewiy(29° — 1)
dt kg ’

where 7 is the average occupation number of atoms in the harmonic potential and

(3.31)

can be written as a function of temperature from the partition function of the energy

series of the harmonic oscillator states shown in Eq. 3.32:

n= Z exp( — hwyin (v + %)/kBT)
v=0

— L fepT L hwyity

e ~ 2%aT T—"1Tp (
~ — = 3.32)
— hwyis kT Tiow:
1—e [ kBTE 2T0
hw.in
Ty = . 3.33
07 kg (3.33)

In Egs. 3.32 and 3.33, T is the temperature of atoms with zero-point energy
huwyin/2. v in Eq. 3.31 is the photon scattering rate of the optical pumping field,

calculated as below:

Ay
B ETEYE

where I is the intensity of the optical pumping field, 75 (8 mW /cm?) is the saturation

(3.34)

intensity of ®Rb D1 transition |F = 3) — |F’ = 2) with 7 polarization, and
' and A are the spontaneous decay rate of |F' = 2) state and the detuning of
|F' = 3) — |F' = 2) transition driven by the optical pumping field, respectively. The
temperature after Raman sideband cooling process could be derived after modifying

Eq. 3.31 shown as follows:
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—Ar+ A

T; 0
Ty = Ty + (T, — Ty)e /0, (3.37)

where T; and Ty are the temperature before and after Raman sideband cooling
process, respectively, and ¢ is the time duration of the cooling process, which is 2.4
ms in our optimized case (see Fig. 3.14). After Raman sideband cooling process, the
lattice power is slowly ramped to zero, where the population on the vibrational states
would stay in their original states without internal transitions. When the vibrational
level spacing hwyi, decreases, atoms gradually lose the potential energy from the
lattice trap and keep the same population distribution exp(—hwyip(v + 1/2)/kgT)
based on Boltzmann distribution. As a result, the final temperature 7' decreases,
which is called the adiabatic cooling, as mentioned in Section 3.2.3. Referring to

Reference [33], the final temperature T; could be derived as follows:

o Qo1 +4fe+ 3
Tyy = R(?) W’

where Ty is the recoil temperature and Qg is the spatial frequency in k-space,

(3.38)

(af = ky,, — ky,) as discussed in Section 3.1.1.2. In our 2D triangular lattice,
Qo = 3k, where k is the wavevector of the lattice field. fg is Boltzmann fac-
tor exp(—hwyin/kpTy). We fit our experimental data with the theoretical model
of Egs. 3.37 and 3.38 of the final temperature Ty on the cooling duration, the
detuning of the optical pumping field and the lattice field power.

Figures 3.18 and 3.19 show the temperature as a function of the cooling duration
t. In this experiment, the temperature gradually decreased with the time duration
of the cooling process, which followed the time evolution of the ensemble temperature
in Eq. 3.31, as shown in Fig. 3.18. However, the temperature rised in longer
cooling duration cases because atoms sliped out of the dipole trap along z-axis,

where the vibrational frequency wyj, became a function of time. When the atoms

started to escape from the dipole trapping beam area, the cooling mechanism cannot
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Figure 3.18: The cooling temperature as a function of the duration of Raman side-
band cooling. The power and detuning of the optical pumping field are 1 mW and
+20 MHz, respectively; the power of the lattice field is 47 mW per beam; and the
temperature is measured with y-axis profile. In the theoretical fit, the vibrational

frequency wyip, is assumed as a constant.

work efficiently, which resulted in the increase of the temperature. The tendency of
the increase of the temperature matches our theoretical model and shows that the
optimized duration for the cooling process is 2.4 ms, as shown in Fig. 3.19.

The optical pumping field played an important role in Raman sideband cooling,
so we checked the cooling temperature as a function of the optical pumping field
power with different detuning A, as shown in Fig. 3.20. The fitting results of the
final temperature matched our theoretical model in the low power range as shown
in Fig. 3.21. When the power I of the optical pumping field increased, it blew the
atomic ensemble away, which is the reason why the temperature increased and some
data points were missing in the high power region. We also checked four detuning
values and measured the final temperature. Different detuning A had a similar trend
as a function of the pumping field power. However, when the sign of the detuning
reversed, the behaviour was different due to the sign of AC Stark shift. The red
detuned optical pumping field shifted the vibrational levels down, which increased
the coupling between the dark state |F' = 3,mp = 3,v = 0) and the neighbour
vibrational state |F' = 3,mp = 2,v = 0). As a result, the intended dark state
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Figure 3.19: The cooling temperature as a function of the duration of Raman side-
band cooling. The power and detuning of the optical pumping field are 1 mW and
+20 MHz, respectively; the power of the lattice field is 47 mW per beam; and the
temperature is measured with y-axis profile. In the theoretical fit, the vibrational

frequency wyip, is set as a function of the cooling duration due to the escape of atoms

from the dipole trap on z-axis.
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Figure 3.20: The cooling temperature as a function of the power of the optical
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beam; the cooling duration is 2.4 ms and the temperature is measured with y-axis

profile.
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was not dark, which caused the atomic ensemble being blown away. Because the
optimized final temperatures did not depend on the detuning of the optical pumping
field, the larger blue detuning (+20 MHz) and higher power (1 mW) were chosen in

our experiment for the lower power sensitivity.

: , :
A -20MHz

e -A4AMHz

Temperature (uK)
N w EEN
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10.37

0 10 200 300 400 500
Optical pumping beam power (uW)

Figure 3.21: The cooling temperature is a function of the optical pumping power in
the low power range of Fig. 3.20 with -4 and -20 MHz detuning from |F = 3) —
|F" = 2). The solid lines are the corresponding fitting curves based on Egs. 3.37
and 3.38.

Figure 3.22 shows the cooling temperature as a function of the lattice power.
In this experiment, the power and the detuning of the optical pumping field were
1 mW and +20 MHz, respectively. The cooling duration was 2.4 ms, and the z-
axis magnetic field was optimized for different vibrational level spacings wyi,. The
lattice power was converted to Lamb-Dicke parameter n (see Eqs. 3.24, 3.25 and
3.30) for the curve fitting. The heating effect increased with the decreasing lattice
power (increasing 1), so the temperature would increase shown in our theoretical
model. The temperature difference between x and y axes came from the imperfect
alignment of the lattice beams, so the vibrational energies in different axes were not

degenerate, which caused the difference of the final temperature. The ground state
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temperature was calculated from the zero-point energy of the harmonic oscillator
model, and we can see that the experimental temperature started to approach the
ground state temperature in the low limit range with n < 0.45, which meant the
population did not completely transfer to the lowest vibrational state (v = 0) or the
harmonic oscillator model deviated from the lattice band structure in the low power

region of the lattice field.
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Figure 3.22: The cooling temperature is a function of Lamb-Dicke parameter . The
black squares and the green circles are the temperatures measured with z-axis and
y-axis profiles; the red solid line is the theoretical fitting curve of x-axis data; the

blue triangles are the calculated ground state temperatures.

The density of the atomic ensemble was estimated by measuring the optical
depth (OD) after Raman sideband cooling. A circularly polarised probe beam of 1
pW and 2 us long, resonant on the D2 line |F' = 3) — |F = 4), was sent along the
quantisation axis direction. We measured the transmission of the probe beam and
obtained OD = 7(2). Combining the size of the ensemble L = 0.7(2) mm in the
z-direction, we calculated the number density of atoms n = 8.0(3) x 10° cm™3 after
Raman sideband cooling with OD = onlL, where o is the resonant cross section for

isotropic light polarisation. The corresponding phase-space density n/\gB is about

5



1/581, where A\yp is the thermal de Broglie wavelength. The final temperature is

consistently around the recoil temperature Tr = 370 nK, and the number of atoms

after cooling are 1.4(2) x 107. It can be extended to three-dimensional cooling by

adding another lattice beam in the z-axis. This performance will be the foundation

for our further experiments, e.g. Bloch oscillation in Chapter 4.
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Chapter 4

Motion Sensing in Periodic

Potential

In Chapter 2, a new measuring method using the EIT-enhanced light dragging effect
is introduced. In that experiment, the atomic ensemble moved in a free space, driven
by momentum kicks from the push field. After that, we focused on the collective
behaviour of atoms in a driven periodic potential. In particular, we investigated
Bloch oscillation of atoms using light-dragging method for the potential applications
of the precision measurement of the recoil velocity in the driven potential, and
studied the topological phases of the spin wave in the moving medium.

Bloch oscillation is a pure quantum phenomenon, “anticipated” by Felix Bloch in
1929 [1]. The basic idea is that, when a particle in a lattice is applied by an inertial
force, its velocity will oscillate, rather than a monotonic increase. From the research
of the electrical conductivity of the solid lattice, Bloch found that the microscopic
behaviour of electrons does not simply follow the classical electromagnetism equa-
tion: J = oE, where J is the current density, o is the electrical conductivity, and
E is the external electric field. He predicted the oscillatory behaviour based on the
derivation from quantum theories. Unfortunately, this phenomenon could not be
demonstrated and observed in a normal solid system, because the Bloch oscillation
period was much longer than the defect scattering period in a solid lattice. For ex-
ample, the concentration of the lattice vacancy defects of FCC (face centered cubic)
copper in the room temperature is about 10714 [2], and the relaxation (collision)
time of an electron is about 1071° s [3], so the vacancy defect scattering period is

about 100 ms. Considering the effect of other defects, Bloch oscillation period must
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be longer than the defect scattering period. According to the second law of thermo-
dynamics, to minimize the Gibb’s free energy of the production of the solid lattice,
the defects (e.g. vacancies, dislocations [4], interstitial sites [5], grain boundaries
and many kinds of impurities) naturally exist in all solid matters, as Fig. 4.1 illus-
trates. The concentration of them in the room temperature can be large, no matter
which crystal is. When an electron moves in a solid lattice, it would be scattered or
deflected by an asymmetric surrounding particles, which is caused by any of defects.

Therefore, the oscillation behaviour is hard to be observed.

Na*

Figure 4.1: Left: dislocation defect in a crystal [4]; Right: an interstitial defect and
a vacancy of a sodium atom co-exist to balance the charge neutrality in an ionic

crystal [5].

In 1993, Waschke et al. observed Bloch oscillation in a semiconductor crystal by
detecting the radiation emitted by electrons [6]. With the help of the superlattice
structure, the oscillation period could be 600 fs, much shorter than that in the metal,
which made the possibility of the completion of the oscillation. Compared with the
challenges in a real lattice, there are some inherent advantages for the optical lattice:
1. the optical lattice is created by the light field, so it can be turned on or off in any
time; 2. the optical lattice is a perfect lattice without any defect of the real lattice,
so atoms have a long lifetime to complete the oscillation; 3. the lattice vectors (base

vectors in k-space, see Section 3.1.1.2) a} are well defined, so it is easy to modify
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and analyse the behaviours of atoms in this artificial structure. In Chapter 3, we
introduce Raman sideband cooling to cool down atoms to the recoil temperature.
In this chapter, the detail of Bloch oscillation after Raman sideband cooling will be

discussed.

4.1 Bloch Oscillation

Bloch “oscillation” sounds like a classical motional behaviour of particles, but it is
truly a pure quantum phenomenon, which verifies the wave-particle duality of the
matter. Here, atoms (or other particles) are treated as matter waves and interact
with a periodic structure with the wave nature. When atoms are accelerated by
some external force, their average momentum (wavevector) would linearly increase
up to a critical value, e.g. the half of the lattice vector a} in the first Brillouin zone,
and then reflect with the reversed momentum. For Bloch oscillation in a 1D optical
lattice, the oscillation amplitude is not determined by the physical distance between
lattice planes, and the oscillation period is not a function of the lattice trapping
potential. To explain Bloch oscillation in an optical lattice, two pictures: moving

lattice picture and quantum optics picture are used.

4.1.1 Moving Lattice Picture

In the theoretical frame of solid state physics, the Hamiltonian of the particle in a
1D periodic potential is:
Hy = @—l—(/j(z). (4.1)
2M
Equation 4.1 neglects the internal motion of the electrons in the atom, where py; is
the momentum of the center of mass of the atom; M is the mass of the atom; U (2)
is the periodic potential created by the optical lattice, with the same definition as

Eq. 3.18, which is a function of the position on z-axis. Based on Bloch theorem,

the wave function ¥ of an atom in a lattice can be written as:

U, q(2) = eiqzunyq(z), (4.2)

where n is a discrete quantum number of the lattice energy bands; ¢ is a continuous

82



quasi-momentum of the atom, which is the momentum conserved within the lattice
vector (q = py; + Naj, where pj, is the real momentum of the atom with the
average velocity (v) ((v) = h™}(dE/dq)) and the effective mass M* in the lattice
(M* = R*(d®E/dg?*)™"); N is any integer; a; is the absolute value of the lattice
vector; E is the total energy of the atom in the lattice). In addition, u,4(2) is
the periodic wavepacket function corresponding to the lattice structure and the
intrinsic properties of the atom; ¥, ,(z) is also called Bloch state, which describes
how the matter wave of the atom distributes in the lattice, such as a plane wave
exp(igz) with some specific waveform u,, 4(z). In Section 3.1.1.1, we assume that the
radial trapping is uniform because of the large size of our lattice light beams, which
well supports the approximation of the atomic plan wave in the axial direction. To
accelerate atoms, an external force F'is applied on the atom, so the quasi-momentum

g and atomic wavepacket function w,, , become time-dependent as below:

U, 02, 1) = 4O%y, (21) (4.3)
q(t) = q(0) + % (4.4)

Equation 4.4 describes the linear increase of the atomic quasi-momentum ¢(t) under
a constant external force F'. However, an atom is electrically neutral, so the external
electric field does not work in this case. Instead, a moving lattice is implemented
to accelerate cold atoms for Bloch oscillation. In Fig. 4.2, when the atom starts
to interact with two lattice fields, the frequency detuning between the two fields
provides an initial velocity v of the atom. However, the light fields with different
frequencies cannot construct a standing wave (optical lattice) in the lab frame, so it
is necessary to consider this configuration in the moving frame of the atom. Based
on the first order of Doppler effect, moving atoms actually experience the light field
with a frequency shift k- v, which is kv in 1D case as shown in Eqs. 4.5 - 4.7, where

k is the wavevector of the lattice field.

w1 — klv = Wy + kQU (45)
Aw
V=g (Aw = w1 — ws) (4.6)
d  Aw Aw
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Figure 4.2: An atom experiences a moving lattice in its frame with the detuning

between two lattice fields (w; > w2).

Equation 4.5 shows the condition of the moving lattice. Under the approximation
k1 =~ ko = k, the velocity of the moving lattice is equal to the velocity of the atom,
as shown in Eq. 4.6. Because the velocity of the atom can be controlled by the
detuning between two lattice fields, it is possible to tune the acceleration of the
atom’s velocity as well. Equation 4.7 shows the correlation between the acceleration
a and the change of the frequency Aw. If the detuning Aw is linearly ramped up,
the external force F' caused by the moving lattice is a constant value (F' = —Ma)
and the quasi-momentum ¢(¢) in Eq. 4.4 would linearly increase over time.

In the moving lattice, the band structure is the same as the static lattice. Figure
4.3 shows the difference between the free particle case and the lattice case in the
first Brillouin zone [7]. The energy E of free particles is a parabolic function of the
momentum p (E = p?/2M), so there is no inflection and the possibility to oscillate.
Based on Bloch theorem, when atoms distribute in a periodic potential, the lattice
potential interacts with the atoms periodically, and finally produce allowed energy
bands and forbidden energy gaps. As (b) in Fig. 4.3 [7], we can see the quasi-
momentum span is from —n/d to m/d, and there are some band gaps near the
Brillouin zone boundaries (¢ = Fm/d or Fk) between two energy bands, which
plays a key role in Bloch oscillation.

With the band structure and the external force F', the mechanism of Bloch

oscillation in the 1D lattice is shown in Fig. 4.4. Initially, the atom is in an inertial
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Figure 4.3: The band structure E,, , (solid lines) and the average velocity (v) (dash
lines) of the atom in a 1D lattice are a function of the quasi-momentum ¢. Ej is
the recoil energy; d is \/2, the spatial period of the lattice. (a) free particle case;
(b) optical lattice case, which shows the difference near the periodic zone boundary

q = +m/d from the free particle case in (a) [7].

frame at rest or with a constant velocity v. When the detuning Aw starts ramping,
the atom is applied by a force F', and its quasi-momentum ¢(¢) follows the change
over the time. At half of the oscillation period (75/2), the atom reaches the boundary
of the Brillouin zone. The zone boundary in the solid state physics is a special region
due to the two-way momentum kicks from the lattice vector a;. The same as the
boundary (¢ = £7/d) of the optical lattice case in Fig. 4.3, the average velocity
of the atom ((v) = h™*(dE/dg)) is 0 and its momentum is not well defined, which
mixes +k (+7/d) and —k (—m/d) due to the periodicity of the atomic wavefunction
in the lattice and the reversible two-photon Raman transition given by the lattice
field, which shifts the momentum +2hk or —2hk on the boundary position. At the
zone boundary, the atom has two choices: reflecting back by the 2hk momentum
kicks of two-photon Raman transition or jumping to a higher energy band. The
first choice is Bloch oscillation. The second choice causes the loss out of the moving
lattice, because Bloch oscillation on the higher energy band involves higher order of
multi-photon transitions. However, the probability of such a transition in a higher
energy band is much lower than that in the fundamental band. For example, the
four-photon transition is required for Bloch oscillation in the first excited band.
The work of Dahan et al. in Fig. 4.5 showed the experimental data of the direct

observation of Bloch oscillation [7]. The Cs atoms were accelerated by a moving
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Figure 4.4: The half cycle of Bloch oscillation. 75 is the period of Bloch oscillation;
F' is the external force caused by the accelerated frame; F[q(t)] means the atomic

energy is a functional of ¢(t); v' and v” are the velocities at their respective time.

lattice, whose velocity was detected by Raman velocity-selective spectroscopy. In
this figure, the average momentum of the atomic ensemble kept increasing up to the
zone boundary at the half period 75/2, and gradually became a superposition state
with the momentum +k and —k. After 75/2, the momentum with a negative sign
(—k) dominated and kept increasing again. Finally the average momentum of atoms
returned to the initial value.

In the analysis above, the dynamics of the atom in the moving lattice look
similar with the harmonic oscillation in the classical dynamics. However, there are
several differences: 1. the curve of the band structure is not a parabolic, sine or
cosine function; 2. the external force is a constant value, so Bloch oscillation is
not a harmonic oscillation; 3. the oscillation happens in k-space, so the oscillation
amplitude is not related to the spatial period d of the lattice. Considering the
bandwidth A,, (n = 0 for the fundamental band), the spatial amplitude As can be
derived by:
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Figure 4.5: The number of atom is a function of the atomic momentum with the

time evolution t,. 75 is the oscillation period [7].

|F|- Ay = An
2
Ap

Bandwidth A, is a function of the intensity of the lattice fields, and the force F
is proportional to the acceleration a. Both of A, and F can be tuned with the
parameters of the laser, but there is no relation with a spatial period (d = \/2)
of the lattice. Therefore, Bloch oscillation is not a classical oscillating motion by
the collision among physical walls. Another important parameter is the oscillation

period 75. According to Eq. 4.4, the period 75 could be obtained as:

|F|TB _2_7T

R d

h
ngw. (49)

From Eqs. 4.7 and 4.9, they show the reason why the Bloch oscillation period 75
of the electrons in the metal could be much longer than the defect scattering period.
Assuming the absolute values of the external force F' are similar in “electrons in the

metal” case and “atoms in the optical lattice” case, the spatial period d shows a
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large difference between these two cases. In our optical lattice, d is 390 nm and 75
is about 0.5 ms. In the metal, however, d is about 0.1 to 0.2 nm, so its 7 could
be much longer than the defect scattering period (100 ms for the vacancy defect

scattering only in FCC copper [2, 3]).

4.1.2 Quantum Optics Picture

Compared with the moving lattice picture, the quantum optics picture directly ob-
serves the velocity change in the lab frame, rather than in a non-inertial frame. As
shown in Fig. 4.6 [8], similar to Bragg diffraction, atoms gain h(k; — ky) (= 2hk)
momentum kick and the corresponding kinetic energy from two counter-propagating

lattice fields based on momentum conservation and energy conservation.

Ig,2hk)

1 1 i >
>

0 hk 2hk 4hk  p(ik)

Figure 4.6: The atomic momentum states are transferred by the momentum kicks
from two counter-propagating lattice fields. |g,0) is the initial momentum state on
the fundamental (ground) band; |e, (25 + 1)hk) is the excited state (j is a positive
integer or 0); A and ¢ are the single- and two-photon detuning of the two-photon

Raman transition, respectively [8].

When the frequency difference between two counter-propagating fields is in-
creased linearly, the atom receives the 2hk momentum kick in each momentum
transfer cycle at some discrete point. As a result, the total momentum change of
the atom is 2jhk, where j is the index number of the transfer cycle. Accompany-

ing the momentum transfer, the kinetic energy of the atom also increases to 4j2Er
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((2jhk)2/2M = 4j2ER, where Ep is the recoil energy for the lattice ﬁeld), which
means that the energy 4(2j+1)Eg (4((j+1)?—j%)Er) would be added to the atom
from jth to (j 4+ 1)th cycle. However, the energy increase relies on the two-photon
Raman transition, so the given energy in the cycle might be not enough if the fre-
quency difference between two lattice fields is not tuned to some specific value to
match the energy gap 4(2j + 1) Ez. In the experimental data of Peik et al. shown in
Fig. 4.7 [8], the energy non-conservation in the process caused that the momentum
transfers in most of the cycles failed (see the plateaus in the figure). The transfer
only worked in the narrow ranges of the frequency difference of two lattice fields
and the theoretical energy gap (see the rising slopes in the figure). The momentum
(velocity) of the atom was therefore increased stepwise rather than linearly. Addi-
tionally, because the energy gap 4(2j + 1)Er was linearly boosted, if the detuning
between two lattice fields was also linearly ramped (Aw is a constant), the stepwise
rising of the velocity in Fig. 4.7 had a constant period, which totally agreed with the
conclusion of the oscillation period 75 in the moving lattice picture (see Eq. 4.9),

because of the constant external force F'.

W A~ G

—_

mean atomic velocity Vgl

o
(<)
o
2]

1.0 15 2.0

time [1g]

Figure 4.7: The mean velocity of the atomic ensemble is a function of time during
Bloch oscillation process. The dots and the solid line are the measured data and

the theoretical velocity of the moving lattice, respectively [8].

The experimental result in Fig. 4.7 was measured in the lab frame, but it showed
the same oscillatory behaviour of the atom in an accelerated frame. Assuming an
periodic function vy as the velocity of an atom in the accelerated frame, and a linear
function v; as the velocity of the moving lattice in the lab frame, the total velocity

Vtotal Of the atom in the lab frame can be calculated with v; + vo. Equations 4.10
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- 4.12 are plotted in Fig. 4.8, where a is the acceleration, defined in Eq. 4.7, A,
is the amplitude of the atom’s velocity in accelerated frame, which is proportional
to the band width A,,, and Qp is the angular frequency of Bloch oscillation. Eq.
4.12 qualitatively matches the experimental data in Fig. 4.7, which allows us to
decompose the total velocity function into two parts: v; for the moving lattice and
vy for the atom inside of the moving lattice, which shows the same behaviour of

Bloch oscillation as the conclusion in the moving lattice picture.

vy = at (4.10)
vy = Aysin (Qp(t + 0.27) + 0.5sin(Qp(t + 0.27))) (4.11)
Vtotal = U1 -+ V2. (4.12)

4 — Total velocity of atom in lab frame
— The velocity of moving lattice in lab frame
—_ — The velocity of atom in accelerated frame
=
L)
S—
2
(8
o
()
>
rr
Time (a.u.)
-0.81

Figure 4.8: The plot of Eq. 4.10 (blue line), 4.11 (red line) and 4.12 (black line)
with a=0.75; A,=0.25; Qp=5.

As mentioned in Section 4.1.1, the band structure of the lattice is not a simple
sine or cosine function of the quasi-momentum ¢, and the average velocity (v) could

be calculated by:

() = 32, (413)
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Based on Eq. 4.13, the velocity function is not a sine or cosine periodic function.
Equation 4.11 mimics the velocity curve in Fig. 4.11 [7, 8] to simplify the mathe-
matical function for the qualitative analysis. The real simulation data will be shown

in Section 4.3.1.

4.1.3 Oscillation Efficiency

From Sections 4.1.1 and 4.1.2, we can see that the efficiency of Bloch oscillation
is mainly determined by the two-photon Raman transitions. In the moving lattice
picture, the Raman transition needs to work at each zone boundary (see Fig. 4.4),
if the atom jumps to a higher energy band, it would not follow the motion of the
lattice anymore, and its oscillation behaviour would stop as shown in Fig. 4.9 [9].
In the quantum optics picture, once the atom misses the Raman transition with the
specific frequency difference 4(2j 4 1) Eg, it would miss 2k momentum kick, which

means its velocity would remian unchanged.

losses

Energy

Bloch oscillations

-1.0 -0.5 0.0 0.5 0 -0.5 0.0 0.5 1.0
Momentum (units of hk)

Figure 4.9: The energy band structure of an atom. When the atom reaches the
zone boundary, there are two routes: 1. staying in the fundamental band, which is
Bloch oscillation; 2. jumping to the higher energy band, which is the loss out of the

moving lattice [9].

From the above discussions and Fig. 4.9, the loss to the higher order bands
determines the efficiency of Bloch oscillation. The source of the losses is called

Landau-Zener tunnelling effect. The tunneling rate r is given by [10]:
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r=exp(— (4.14)

E.(t)

A 4

Figure 4.10: The diagram of the parameters AE,. and E, . in Eq. 4.14. The detail

is explained in the text.

where AE, is the energy gap between the fundamental band and the first higher or-
der band at the crosspoint of two potential wells; E, . is the energy of the ground (g)
or the excited (e) state, which is a function of time because the atom is accelerated,
as shown in Fig. 4.10. Equation 4.14 shows the tunnelling rate increases when the
energy gap at the crosspoint is smaller, the slopes (absolute values) of the potential
curves are larger, or the atomic acceleration (the external force F') is higher. The
energy gap and the curve slope depend on the total potential depth Uy. So Eq. 4.14
can be converted to another form, as shown in Eq. 4.15 for the analysis of Bloch

oscillation [8, 9]:

r= e:cp(—%) (4.15)
a
a. w2 Uo 9
R — 4.1
o~ 285 < g (4.16)
00y Uy
Q= = — 4.1
2A 2R’ (4.17)

where a and a. are the acceleration in Eq. 4.7 and the critical acceleration, respec-
tively, {2 and o are the Rabi frequencies of the Raman transition and the single
lattice beam 1 or 2 in Fig. 4.2, respectively, and A is the single-photon detuning,
the same as that in Fig. 4.6, and Up is the potential depth of U(z) in Eq. 4.1.
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Landau-Zener tunnelling effect describes the probability of the non-adiabatic trans-
fer of the population from one energy band to anther one. Here, we would discuss
two tunable parameters: the potential depth Uy and the external force F', to improve
the efficiency of Bloch oscillation.

Based on the Fourier transform, a higher potential depth corresponds to a nar-
rower band width A, and a smaller velocity range in k-space as shown in the ex-
perimental data of Dahan et al. in Fig. 4.11 [7, 8]. A higher potential depth could
efficiently reduce the tunnelling rate to higher energy bands, because the band gap
becomes larger and the atomic velocity becomes lower, as shown in Eqgs. 4.14 - 4.16.
However, Landau-Zener formula makes some approximation in the derivation, so it
is valid in weak-binding limit only (Uy < 20Eg, where Ep is the recoil energy, de-
fined in Eq. 1.11). The efficiency does not change after the potential depth is higher
than 20Fg, so the magnitude of the external force F' dominates in tight-binding
limit.

The efficiency increased by a deep potential well looks helpful for the experiment,
however, the narrow band width and velocity range would cause a small oscillation
amplitude as shown in Eq. 4.8. Therefore, it is efficient to push the atomic en-
semble in some direction, but also increases the difficulty to observe the oscillation
behaviour, so it is not suitable for our experiment because we tend to measure the
recoil velocity vgr. The same argument can be also explained in the quantum optics
picture, where the total velocity simulation of Fig. 4.8 would show smaller deviations
from the straight line of the lattice velocity when the lattice field is more intense.
The reason is that, when the lattice field intensity increases, the scattering rates
of the off-resonant Raman transitions also increase, so the total velocity would be
closer to a linear function of time. As a result, the oscillation behaviour is difficult
to observe in this configuration.

The external force of Bloch oscillation is proportional to the acceleration a of the
moving lattice and the frequency ramping rate Aw. A stronger force could make a
higher probability to drive atoms jump to higher energy band, consistent with the
varied tendencies in Egs. 4.14 and 4.15. Because the external force F' is inversely
proportional to the oscillation period 75 as shown in Eq. 4.9, the experimental data
and the simulation of Cladé et al. in Fig. 4.12 showed the efficiency as the function

of the oscillation period [9].
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Figure 4.11: Left: the band structure of Cs atoms (in unit of the recoil energy Eg)
as a function of the quasi-momentum; Right: the atomic mean velocity (in unit of
the recoil velocity vg) as a function of time-variable quasi-momentum Ft,, for three
different values of the potential depth: (a) Uy = 1.4 ERg; (b) Uy = 2.3 ER; (¢) Uy =
4.4 Eg (7, 8].
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Figure 4.12: The efficiency of 20 Bloch oscillations as a function of the oscillation
period (75 in Reference [9]) The dots and the solid line are experimental data and

the simulation, respectively; the potential depth Uy is 40Eg [9].
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Bloch oscillation is a kind of adiabatic transitions, so a weaker force could help
achieve a higher efficiency of this process. If the force is weak enough not to in-
duce the internal transitions among energy bands, it needs to satisfy the adiabatic
criterion:

it )| < P Bl (4.18)

where u,, 4 is the wavepacket function of Bloch state, as defined in Eq. 4.2. For the
case Uy < 10Eg, Eq. 4.18 shows the condition |Mad| < (7/8)U2/Er (d = \/2,
which is the spatial period of the lattice), which is easier to be satisfied in a deeper
potential well and a small external force [8]. The adiabaticity could be improved
with a reduced force as shown in Fig. 4.12, but it is not an ideal strategy to choose a
long oscillation period in the experiment due to the system stability and coherence
concerns. Therefore, there are two more ways to improve the adiabaticity, one is
to tune the frequency ramping rates adabatically, and the other is to tune relative
phases of two lattice fields in the beginning and ending stages of the frequency
ramping, both of which improvement methods are discussed in Reference [9]. In
this experiment, we optimize the potential depth Uy and the acceleration a to 7TEg

and 30 m/s?, respectively, which satisfy the adiabatic criterion in Eq. 4.18.

4.2 Experimental Setup

4.2.1 Optical Setup

Figure 4.13 shows the optical setup for EIT measurement with Bloch oscillation.
Because the precooling of Raman sideband cooling is necessary to achieve efficient
Bloch oscillation, the optical setup was built on the foundation of Raman sideband
cooling alignment as described in Section 3.2.2. Other optical components for the
1D optical lattice of Bloch oscillation and EIT phase measurement were then added.
The lattice field for Bloch oscillation shared the same light source with the lattice
field for Raman sideband cooling. The setup for frequency ramping of the lattice
field for Bloch oscillation is shown in Fig. 4.14. The lattice beam was separated
into two parts, both of which double-passed two independent AOMs with driving

frequency f; and fs, and then returned to the original optical paths and were coupled
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into an optical fibre. Frequency f; was ramped from 80 MHz, and frequency fo was

fixed at 80 MHz.

Probe

BO RSC
Lattice Lattice
HWP2
——/
HWP1
- H 7
—_— |
PBS Dichroic mirror

Detector

‘ Control
X

Figure 4.13: The optical setup for EIT measurement for Bloch oscillation experiment,
where RSC and BO are Raman sideband cooling and Bloch oscillation, respectively;
PBS is the polarizing beam splitter; Dichroic mirrors (785 nm RazorEdge Dichroic
laser beamsplitter from Semrock), with a longpass edge at 785 nm; HWP1,2 are the
half-waveplates. In our frequency tuning setup of the BO lattice fields in Fig. 4.14,
the frequencies of two orthogonally-polarized BO lattice fields are tuned by the RF
inputs of two AOMs: one can be ramped, and the other is fixed. Therefore, the
direction of Bloch oscillation can be switched by changing the angle of HWP1, and
HWP?2 is used to tune and keep the polarization of one BO lattice field the same as

another one.

Continuing from the output of the optical fibre, the lattice field was separated
into two parts to build a 1D optical lattice with the potential depth Uy (7ER),

where the polarization of two fields should be the same, and optimized with two
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Figure 4.14: The frequency tuning setup of the lattice fields for Bloch oscillation,
where HWP is the half-waveplate; QWP is the quarter-waveplate; PBS is the po-
larizing beam splitter; AOM is acoustic optical modulator; RF f; 5 is the input
frequency of AOM for frequency tuning.

HWPs (half-waveplates) in the setup. The probe and control fields still counter-
propagated with each other (£185°) such as the alignment described in Section
2.2.2, but the interaction plane was changed from the vertical plane (yOz) to the
horizontal plane (xOy). The frequencies, the heterodyne detection setup, and the
beam size of the probe and control fields have already been discussed in Section
2.2.2. The atomic transitions used in the probe and control fields were changed to
D1 |F =2) — |[F' = 3) and D1 |F = 3) — |F’ = 3), respectively. Changing the
frequency of the probe and control fields to D1 line provided a possibility to align

the lattice beams and the probe beam with a dichroic mirror (see Fig. 4.13).

4.2.2 Time Sequence

Figure 4.15 shows the time sequence of this experiment, including four parts:

1. MOT: This stage prepared a cold atomic ensemble with the cooling field,
repump field and the quadratic magnetic field, which are discussed in Sections 2.2.1
and 2.2.3.

2. Raman sideband cooling: This stage was the precooling phase for loading
atoms into the 1D optical lattice of Bloch oscillation, as discussed in Section 3.2.3.

The total duration of z-axis magnetic field was reduced to 8 ms.
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Figure 4.15: The time sequence of the experiments: MOT, Raman sideband cooling,

Bloch oscillation and EIT phase measurement.

3. Bloch oscillation: The pulse duration of the 1D lattice was 4 - 8 ms, where
the rising and falling time were 0.8 and 0.1 ms, respectively. In Eq. 4.19 (b; and
by were 6 and 50, respectively) and Fig. 4.16, the rising time was the same as that
of Raman sideband cooling to avoid the internal transitions; the falling time was
close to 0 (0.1 ms) to keep the atomic velocity after Bloch oscillation. The linear
frequency ramping started at 1 ms after introducing the lattice field, and lasted a

few ms with the optimized acceleration a 30 m/s* (75 MHz/s).

I = tanh(b;(t — 0.4)) + tanh(—bs(t — 4)). (4.19)

4. EIT phase measurement: This part was the same as in Section 2.2.3. To
measure the atomic velocity at different moments during the acceleration of Bloch
oscillation, the delay generator DG535 (DG535 - Low jitter delay generator from
SRS) was used to shift the timing of the control and the probe pulses. Additionally,
we added an extra control field pulse with 0.5 ms duration for the optical pumping
from |F' = 3) to |F' = 2). This pulse was introduced before Bloch oscillation started
with two reasons. One is to use full power of the control field to pump the populations
to |F = 2), because most population were on |F' = 3, mp = 3) state after Raman
sideband cooling process. The other is to avoid the extra momentum kicks of the
optical pumping during the acceleration of Bloch oscillation. In this experiment, we
tended to measure the recoil velocity caused by the accelerating lattice, so the extra

momentum kicks from the optical pumping could cause some systematic errors.
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Figure 4.16: The time profile of the 4 ms lattice field pulse for Bloch oscillation.

4.3 Data and Discussion

Figure 4.17 shows the displacement of the atomic ensemble at different flight time
after the same Bloch oscillation process, where the ramping rate was 75 MHz/s (30
m/s?) and the ramping time was fixed at 3 ms. Only part of atoms were accelerated
by Bloch oscillation, which the highest ratio was 55% in this experiment. There were
two reasons for this low transfer ratio. Firstly, the temperature of the atomic ensem-
ble was not low enough with respect to the recoil temperature, so there were some
atoms not following the motion of the lattice. Moreover, the oscillation efficiency
mentioned in Section 4.1.3 might not be 100%. Referring to Eqs. 4.15 - 4.17, the
Landau-Zener tunnelling probability r in this case was e 24 = 3.8 x 107! and the os-
cillation period 75 was 411 pus (calculated from Eq. 4.9), so the oscillation efficiency
during the ramping time 3 ms was (1 — 3.8 x 10711)3000/411 — (. 9999999997 ~ 1,
which means the atomic temperature dominated the final oscillation efficiency in
this case. Additionally, in Fig. 4.17 we can also see that the fluorescent images
become dimmer and dimmer with the longer flight time. This was due to the escape
of atoms from the dipole trap on z-axis, where our Raman sideband cooling was on
xy plane only.

From the experiment in Chapter 2 to that in this chapter, we added some compo-

nents for Raman sideband cooling and Bloch oscillation, both of which caused a few
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Figure 4.17: The images of the atomic ensembles after Bloch oscillation, where the
acceleration a is 30 m/s?; the ramping time is 3 ms; the waiting time for imaging

after frequency ramping is: (a) 15 ms; (b) 20 ms; (¢) 25 ms; (d) 30 ms.

loss of the atoms. In addition, sub-Doppler cooling also needed to be implemented
to pre-cool atoms for the following Raman sideband cooling, which could cause a
huge loss of atoms as well. As mentioned above, the reduction of optical depth (OD)
was inevitable, which shrank from 36 to 1. This degradation means the phase shift
in the EIT measurement would roughly shrink to 1/36 of the magnitude shown in
Chapter 2, in addition, our target was to measure the recoil velocity, which meant
the data precision needed to be improved 2 orders of magnitude.

To achieve a better precision, we built PID system to stabilize the control field
power (see Appendix A.2) and improved the algorithm of the phase shift calculations
(see Section 4.3.2). We did a test of the delay time with different detunings of the
probe field without Bloch oscillation as shown in Fig. 4.18. Based on Eq. 4.20 [11]
(where I's; is the spontaneous decay rate of |3) — |1) transition, 2. is the Rabi
frequency of the control field, and ¢ is the two-photon detuning), the delay time
was proportional to the refractive index due to no light dragging effect under this
circumstance. The resolution (precision) was 0.005 ns (0.7 mm/s), which was about

1 order of magnitude smaller than the performance shown in Chapter 2 (0.03 ns).
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Figure 4.18: The delay time as a function of the detuning of the probe field, where
the control field power is 2 mW.

The phase measurement for a different ramping time of Bloch oscillation is shown
in Fig. 4.19. The control field power was 0.6 mW, corresponding to 0.2 us group
delay t, in EIT process. The pulse widths of the control and the probe fields were
1 ms square pulse and 5 us (FWHM) Gaussian pulse, respectively. The frequencies
of the control and the probe fields were both resonant with |2) <> |3) and |1) <> |3),
respectively. The ramping rate was 75 MHz/s (30 m/s?), and the potential depth
Uy was TEgR. The acquisition time for each data point was 75 s on average 25
times. From Fig. 4.19, we can see the phase shift in the beginning of frequency
ramping increased 2 times faster than other data points, which might be caused by
the non-adiabaticity of the external force (see Section 4.1.3). The direction of Bloch
oscillation can be switched by tuning the angles of the HWP shown in Fig. 4.13.
Both of the phase shifts with Bloch oscillation in two directions had the same offsets
from the phase shifts caused by EIT effect, the partial atoms not accelerated by
Bloch oscillation and the optical path difference between the signal beam and the

reference beam (see the signal and the reference beam alignment in Section 2.2.2).
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To take out these offsets, we took the difference between the phase shifts in two

oscillating directions and plotted them in Fig. 4.20.
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Figure 4.19: The delay time as a function of the ramping time, where the red squares
are the data of co-propagated Bloch oscillation and the probe field; the black circles
are the data of counter-propagated Bloch oscillation and the probe field.

Figure 4.20 shows the velocity of the atomic ensemble increasing monotonically
during Bloch oscillation, which is not stepwise like Fig. 4.7. To improve this result,
we had two strategies: One was to extend the data acquisition time to 30 minutes
per data point, as shown in Fig. 4.21, which achieved the precision 0.52 ps (0.00052
ns), one more order of magnitude improvement. The other was to use the theoretical
simulation to search for an optimized potential depth Uy and the cooling temperature

Tg for Bloch oscillation.

4.3.1 Theoretical Simulation

The energy of a particle in a 1D periodic potential can be described by the following

Schrodinger equation:

Hy VU, (2) = [-==V2 + U (2)|¥,(2) = E,V,(2), (4.21)
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Figure 4.20: The delay time as a function of the ramping time, where the phase

time data are the difference between the data in two configurations in Fig. 4.19.
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Figure 4.21: The stability test of the phase measurement, where black circles are the
measurement, data; red circles are the optical signals of phase differences without
passing EIT media. The precision of phase measurement data and the optical signals

are 0.52 ps and 0.36 ps, respectively.
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where M is the mass of the particle; n is the quantum number of the energy band;
U (z) is a periodic function of the potential well. To obtain the energy band structure,

we convert Eq. 4.21 to the form in k-space:

(p+ n - 2hk)?

]/—\IM\Ijn(p) = [ IM

+ / dp'U(p —p)|Wa(p) = En(p)Wn(p),  (4.22)

where k is the wavevector of the lattice field; 2k is the lattice base vector of 1D
lattice, which is explained in Section 3.1.1.2. Considering the fundamental, first-
excited and second-excited band, the Hamiltonian in k-space with n € [-2,2] can

be expressed in a matrix form for the numerical calculation as follows:

[ (p—4hk)? Uy Uy
2M 2 4
(p—2hk)? U Uy U
2M 2 4
(p)? U Up U
2M + 4 2 4 ’ <4'23)
(p+2hk)? Uy Us Uo
2M 4 2 4
(p+4hk)? Uy Uo
L 2M ] | 2 ]

where U, is assumed to be a constant Uy in the numerical integration under the weak-
binding limit (Uy < 20Eg). Spanning p to the first Brillouin zone (—hk to +hk),
the band structure of the first three bands could be obtained by the eigenvalue
calculation of Eq. 4.23. The results of the first two bands are shown in Fig. 4.22,
and we can see the band structure of Uy = 7TER case has a higher offset potential
energy, a larger band gap, and a flatter energy curve (narrower bandwidth) than
Uy = 2.3ER case, which is consistent with the discussion in Section 4.1.3.

Referring to Eq. 4.13, the average velocity (v)(p) of the particle in the funda-
mental band can be calculated by p derivative of the energy structure, as shown in
Fig. 4.23. In the figure, we can see the velocity oscillation in Uy = 2.3ER case is
much larger than that in Uy = 7TER case, so it is more difficult to observe Bloch
oscillation with higher potential depth.

For the total velocity vyoa1 during Bloch oscillation, in this case, the momentum
p is a function of time and the changing average velocity (v) of the particles in the
lattice becomes a functional of p(¢). Combining (v)[p(t)] and the additional velocity

at given by the accelerating lattice, the total velocity viota1 can be obtained as:
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Figure 4.22: The band structure of the fundamental and the first excited bands.
Left: Uy is TER; Right: Uy is 2.3ER.
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Figure 4.23: The velocity of the particle in the fundamental band as a function of

momentum p in the unit of hk. Left: Uy is TER; Right: Uy is 2.3ER.
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p(t) = p(0) + Mat (4.24)
exp( — Eo®) fkpT)

Vtotal = 7 : (<U>[p(t)] + at) . (425)
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Figure 4.24: The simulation of the total velocity viota1 as a function of the ramping
time, where the accelerations are both 30 m/s?. Left: Uy is TER, T is 0 uK; Right:
Uy is 2.3ER, Tg is 0 uK.

Figure 4.24 shows the simulation of Eq. 4.25 with two potential depths Uy:
TEr and 2.3FRr. To simulate the real temperature of our atomic ensemble before
Bloch oscillation, the Boltzmann factor exp(—Ey(p)/kpT)/Z is added into Eq. 4.25,
where Ey(p) is the energy of the fundamental band (n=0), and the simulation result
is shown in Fig. 4.25.

From Figs. 4.24 and 4.25, we can see that it is impossible to observe the stepwise
increasing of the velocities under our current configuration (Uy is TER, T is 2 uK).
The potential depth Uy should be lower than 3ER to avoid a flat curve of the energy
structure. However, a shallower trap depth would cause a lower oscillation efficiency
(see Egs. 4.15 - 4.17). For example, when Uy is 3ER, tunnelling probability r
is exp(—4.4), so the oscillation efficiencies after 3 ms and 7 ms ramping time are
91% and 81%, both of which are lower than those in Uy = TER case, but they are
acceptible, so reducing the lattice potential is a good solution. The real temperature
Ts in our experiment was 1.5 - 2 uK, which was caused by the heating effect of the

optical pumping before Bloch oscillation. Velocity selection (Raman cooling) [12, 13]
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Figure 4.25: The simulation of the total velocity viota1 as a function of the ramping
time, where the accelerations are both 30 m/s%. Left: Uy is TER, T is 2 uK; Right:
U() is 2.3ER, TB is 2 ,uK

is a possible solution to select the cold atoms in some specific momentum range,
which can achieve a high efficiency of Bloch oscillation. We plan to implement the

velocity selection to replace the optical pumping in the near future.

4.3.2 Phase Measurement Algorithm

In our phase measurement, we acquired two waveform (signal and reference) data
from the oscilloscope and calculated their phase difference. Fig.4.26 is the user
interface of the acquisition program, which includes three acquisition modules: left,
center, and right part. In Chapter 2, we used the left part to compare the zero
points of two waveforms to calculate the phase difference. This method picked the
data near the zero points only, which was usually less than 20 data points in a
single shot. This was a huge waste of the information we obtained (the oscilloscope
acquired 2500 points each cycle). To utilise the data points more efficiently and
improve the measurement precision, we implemented the ellipse fitting to calculate
the phase shifts with all data points. In our demonstration, there were two stages
of the ellipse fitting:

1. Construction of the Lissajous curve with the acquired data: As shown in
Eq. 4.26, the two waveforms were represented by two cosine functions with different
amplitudes (A; and A,), different offsets (B and By) and a phase difference (A#).

Here we assumed the frequencies w of two waveforms were the same (70 MHz in this
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Figure 4.26: The user interface of the acquisition LabVIEW program. This program
provides two methods to calculate the phase difference: waveform camparison and
ellipse fitting. The mean value and the standard error are calculated in each acqui-
sition cycle, and calculated again after a few cycles (20 times in Chapter 2, 25 times
in Chapter 4) to obtain one final data point on the plot. The right part integrates
the pulse delay control with the delay generator DG535 to scan the phase shifts at

different timings.
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experiment), and eliminated the time variable ¢ and w:

x = Aj cos(wt + 0) + By

(4.26)
y = A cos(wt + Af) + By
1 1,7 — Bl 1 1,y — BZ
t= 08 ( T )= ;[cos ( 4 ) — Ad]. (4.27)
Equation 4.27 can be rearranged to:
r— B 1,y — By
Y cos(cos™( 1 ) — Af)
- B - B
S 2cosA + sin (cos_l(y 2 ))sinAd (4.28)
AQ AQ

- B - B - B
=7 T LY 4 2cosA0 = \/1-— (y 4 2)25inAg (4.29)

r—DB1o, ,y—Ba, x— By, y— B .9
= —2 Af = A 4.
( 1 )* 4 ( 4 ) ( T )( n JcosAO = sin”Af (4.30)
1, 1, 2
— 2 cosA 4.31
:>A%:c —|—A%y AIAQCOS Oy + - -, (4.31)

Comparing Eq.4.31 with the equation of the conic section: az? + bxy + cy? + dx +
ey + f = 0, if we could obtain the parameters in the conic section function, the

phase difference A# could be calculated with:

b
“2Jac

2. Direct least square ellipse fitting: Normally, the curve fitting requires some

A = cos™(

). (4.32)

initial guess of the fitting parameters. It is often necessary to manually tune the
parameters during the fitting process to avoid the local minimum as the fitting
result (taking least square method as an example, it tends to find the minimum
of the square-value summation of the deviation between experimental data and the
theoretical model). Here, we used another fitting method to automate this process.

“Direct least square ellipse fitting” algorithm was developed by Fitzgibbon et al.
in 1996 [14], which featured the conversion from a curve fitting problem (specifically
for ellipse curves only) to an eigenvalue / eigenvector calculation. Based on the
general equation of the conic section (ax? + bxy + cy? +dz + ey + f = 0), we set the

fitting error as F'(«, D), where the definitions of a and D were:
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where o was a vector composed of the fitting parameters, and D was a matrix with
the calculated values from (z;,y;) data (i was the index of the data point). Using

the least square method, we needed to find the minimum value of F(a, D)?:

F(a,D)* = (Da)T(Da). (4.34)

For the ellipse fitting, we set an extra constraint C' matrix:

4ac —b* >0 (4.35)
of'Ca—p=0 (p>0) (4.36)
0 0 20 0 0
0 -1 0000
o_|2 00000 (437)
00 0000
00 0000
00 0000

Introducing Lagrange multiplier A and the constraint C', the formula of error square

became:

F(a,D)? = (Da)T(Da) — Mol Ca — p). (4.38)

To obtain the minimum value of Eq.4.38, we took its « derivative, and set it as 0:

2D Do — 20Ca = 0. (4.39)

We set DT'D = S. Considering the determinant of C' must be 0 (so there is no

inverse matrix of C'), Equation 4.39 can be rearranged to:
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1
S™1Ca = P (4.40)

As shown in Eq. 4.40, the curve fitting problem is converted to an eigenvalue /
eigenvector calculation. However, there are six pairs of the eigenvalues and their
corresponding eigenvectors, denoted by [1/)\;, «;], so choosing a correct solution is
crucial. In addition, the scalings of the eigenvectors cause the solution of eigenvectors
not unique, so we assumed the eigenvector solution «; was pv;. Using the relation
in Eq. 4.39 and timing o in the front of each side of Eq. 4.39, we wrote equations

as follows:

ol'Sa = XaTCa = pA (4.41)

2
= UTSU7 (442)

where p and v” Sv are always positive, so u exists only if X is positive. Therefore,
we chose a pair of the eigenvector with a positive eigenvalue (1/\) as the fitting
solution, and it was the only pair under the ellipse constraint C'. The unknown
value 1 does not make a difference to our result, because it is eliminated in the A6
calculation (see Eq. 4.32).

An advantage of the ellipse fitting is able to use the information of all data points,
and it requires only 6 points to define an ellipse (see Fig.4.27). Because of the six
unknown parameters in «, we separated the data (2500 pionts) to 2500/6 fitting
cycles to enhance the precision. The drawback of the ellipse fitting is its fitting
range, which cannot tell Af from 27 — A6, so Af needs to be in the range [0, 7,
which is the reason why we tuned the phase difference with signal cables in different

lengths to fit our measurement data in this range.
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Chapter 5

Conclusion

In this thesis, a new experimental method of EIT-enhanced light dragging effect for
the motion quantum sensing is introduced. To prove the feasibility and performance
of this new technique, two experiments were demonstrated.

The light dragging effect was performed by the interaction between the light field
and a moving atomic ensemble in free space. The light dragging effect induced a
phase shift of light, which was proportional to the velocity of the moving medium.
The chosen medium was a 8°Rb cold atomic ensemble. The centre-of-mass velocity
of the ensemble was induced by the resonant scattering of the light fields. EIT
effect was used to enhance the dragging coefficient Fy with a high dispersion of
the refractive index and reduce the absorption of the probe field intensity. A large
dragging coefficient F; (= 1.67 x 10°), two orders of magnitude larger than the 8°Rb
hot vapour [1], and five orders of magnitude larger than the first light dragging
effect [2, 3] was achieved. The sensitivity of the velocity was 1 mm/s, two orders of
magnitude smaller than thermal velocity width (Doppler broadening) of the atomic
ensemble (about 100 mm/s).

Also, a degenerate Raman sideband cooling of 8°Rb atoms was demonstrated.
With a 2D lattice produced by three lattice fields, an external magnetic field, and an
optical pumping field, the temperature of the atomic ensemble achieved near recoil
temperature of 357 nK. Moreover, the measurements of atoms’ motion in a driven
periodic potential were conducted using the atomic ensemble trapped in a 1D optical
lattice and accelerated by Bloch oscillation. The phase shift measurements showed
the linear-like relation to the accelerating time with the data precision 0.00036 rad

(0.005 ns, 0.7 mm/s), but did not show the stepwise trend with the oscillation period
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7. With the help of the theoretical simulation, we are aware that the potential
depth and the atom’s temperature are too high to observe the stepwise motion in
our phase measurement. In the future, we will reduce the lattice field intensity and
implement the velocity selection technique to approach the precision measurement
of the recoil velocity of the atoms during Bloch oscillation. Besides, the sensitivity
of the phase shift measurements can also be improved by using larger lattice beam
waist to load more atoms into the lattice, since the sensitivity of the phase shift

measurement is proportional to the square root of OD.
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Appendix A

Circuit Design

A.1 Magnetic Field Switching

In addition to the MOT coil to produce a quadratic magnetic field with a pair of anti-
Helmholtz coil, we also set three pairs of Helmholtz coils to generate the magnetic
fields on x, y, and z axes to compensate the ambient magnetic field, and provide
a magnetic field along a specific direction during the experiment. To control the
magnetic field, we build a current controlling box with a voltage-controlled current
circuit as shown in Fig. A.1, and connect it with a constant voltage V.. as the power
supply to generate a variable current.

In Fig. A.1, the input controllable voltage V; is the sum of two voltages. One
is from the trimmer used to set an offset current (magnetic field) to compensate
the ambient magnetic field. The other is from the trigger pulse regulated by an
AND-gate and a constant voltage of the power supply. This is used to switch the
current. The input voltage V; is converted to a tunable current i, by a n-channel
MOSFET (NMOS).

MOSFET has a multi-layer structure made with some semiconductor materials,
whose performance is sensitive to the temperature and humidity in the surroundings.
To stabilize the current, a v-i (voltage to current) feedback loop is introduced into
the circuit. The basic model of the v-i feedback loop is shown in Fig. A.2 [1]. The
input voltage V; is adjusted by the feedback voltage V to the real input voltage V;,
which is amplified by OP amp (operational amplifier) and MOSFET to the current

AV;. Because the output current 4, is short to the ground in the ideal case, i, would
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Figure A.1: The circuit design of the voltage-controlled current. The components
connected before V; are to manipulate a tunable input voltage Vj, which corresponds
to the output current i,. The input voltage is amplified and converted to the out
current, and the current flows into a feedback loop, which could stabilize the final

output current ¢,. Ry is the resistor for the feedback gain; R, resistor, Cy, capacitor

and D, diode are designed to ease the high frequency noise.

Figure A.2: The basic model of the feedback loop, where R;, are general load
resistors; V; and Vy are the real input voltage and the feedback voltage, respectively;

A and [ are the gains in the main circuit (from OP amp and MOSFET) and the

feedback circuit, respectively.
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be equal to AV;. To make a feedback voltage, the feedback gain [ converts the
output current to the feedback voltage (iy. The above process can be summarized

to three equations shown as Eq. A.1:

Vi=V,—Vj
'l.o:A‘/tL' (Al)
szﬁl.o

i A

o __ A2

in our case, the gain of OP amp (OP27) is 1.8 x 10°, and the transconductance of
NMOS (IRF630) is about 0.09 A/V around 400 mA, so the total gain A is much
larger than 1. The feedback gain 3 can be calculated with Eq. A.3:

_ Y

B , (A.3)

to open

where the term “open” in Eq. A.3 means that input port is supposed to be open
under this condition (Vs = 0), therefore, 3 is equal to Ry, where there is no current
flowing through the 5 K( resistor (see Fig. A.1). From Eq. A.2, we can see the
output current i, is proportional to 1/Ry when A is large enough. Ry is a resistor
for high power (80 W) use, which is insensitive to the surrounding changes, so the
output current can be very stable. In our experience, there is only 1 mA drift under
the condition with 5°C deviation.

MOSFET is a good current source, but it has an issue called the parasitic os-
cillation [2], which is proportional to time derivative of the input voltage (dVs/dt).
This issue becomes non-negligible when the input voltage increases sharply, such as
a square trigger pulse (see Fig. A.3). So, Ry, Cp, and D, are designed to ease and

block the high frequency noise, and finally the oscillation is not observable.

A.2 PID Stabilization System

To acquire the data with higher precision, the stability of the experimental setup
needs to be taken with great care. In our experiment, the data of the phase shifts

are proportional to the light frequency and the dragging coefficient as shown in Eq.
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Figure A.3: The parasitic oscillation shows up in the beginning and ending of the
signal pulse, where the yellow line is the voltage signal converted from the output

current; the blue line is the trigger pulse.

2.6. The light frequency could be well-controlled with the RF synthesizer, but the
dragging coefficient is proportional to the dispersion of the refractive index dn/dw,
which is shown as the central slope in Fig. 1.18 (Re[x] function). The dispersion of
the refractive index is a function of the control field power as Eq. 2.11 shows, and
there is 10% power fluctuation of the probe and control fields. Therefore, a power
stabilization setup could improve the precision of our phase measurement.

Figure A.4 shows the system to stabilize the control field power with the com-
bination of AOM and PID (proportional-integral-derivative) controller. We first
set a reference level with the wheel of the potentometer on the PID box, and then
compare it with the signal level measured by the detector (input from “Detect In”
port). Also, the PID box sends out a feedback voltage from “Modulation Out” port
to the RF synthesizer (Agile RF synthesizer ARF from MOGLabs) to modulate the
RF output power corresponding to our PID feedback voltage. After a few cycles,
the control field power would be the reference level we set.

PID circuit is the key role in this feedback system, which is shown in Fig. A.6.

PID circuit needs to work with the modulation function of the external equipment,
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Figure A.5: The input and output (IO) ports of the homemade PID circuit box,
where the switch is used to permanently turn on or off the box; £15V are the power

supplies of the OP amp (operational amplifier); the others are explained in the text.
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and send out the error signal (the difference between the measured signal and refer-
ence level set by the user) to compensate the fluctuation of the measured signal. In
our experiment, we mainly focus on the power fluctuation, so the PID circuit works
with the amplitude modulation of the RF synthesizer. The way which PID deals
with the error is to produce a negative gain to respond the change of the signal,
which includes three parts: 1. the proportional gain (P-gain Gp), responding to the
current error; 2. the integral gain (I-gain G7), representing the past error from its
charged memory (capacitance); 3. the derivative gain (D-gain Gp), predicting the
future error with the time derivative of the error to realize the instant fluctuation
of the signal. Based on the parameters of our PID circuit, the error compensation

Err.(t) as a function of the error Err(t) is shown as below [3]:

t
Err.(t)=—Gp- Err(t) — Gy / Err(t)dt — GD%Err(t)
0

(Trimmerl)
__Lnmmery) p
sk L)
¢
_ L / Ere(t)dt
(T'rimmer2)(4.7nF’) "
0
: d
— (Tmmmer3)(4.7nF)a

Err(t). (A.4)

Usually P-gain is the main power of feedback gains, but it cannot compensate
the error signal to 0. Therefore, the assistance of I-gain is necessary. D-gain can
respond to the fast fluctuation, but a large D-gain might cause the signal to oscillate.
We set three trimmers to optimize their resistance values for different conditions.
OP27 is a serial number of a kind of OP amp (operational amplifier), which has the
characteristics of low 3dB cut-off frequency (10 Hz for open-loop gain) and slow slew
rate (2.8 V/us), which performs a rising / response time 300 ps in our circuit. R;
and Rp are resistors to solve DC-biasing defect of OP amp and the high frequency
noise amplification, respectively.

Figure A.7 shows the performance of our feedback system, where the initial power

fluctuation (about 10%) is reduced to less than 1%.
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the box cover (see Fig. A.5); Ry and Rp are special resistors designed to solve some

issues, as explained in the text.
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Figure A.7: The stability test of the control field power. The PID feedback system

reduces the power fluctuation to less than 1%.
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